Ruby 3.3.7p123 (2025-01-15 revision be31f993d7fa0219d85f7b3c694d454da4ecc10b)
dtoa.c
1/****************************************************************
2 *
3 * The author of this software is David M. Gay.
4 *
5 * Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose without fee is hereby granted, provided that this entire notice
9 * is included in all copies of any software which is or includes a copy
10 * or modification of this software and in all copies of the supporting
11 * documentation for such software.
12 *
13 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
14 * WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
15 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
16 * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
17 *
18 ***************************************************************/
19
20/* Please send bug reports to David M. Gay (dmg at acm dot org,
21 * with " at " changed at "@" and " dot " changed to "."). */
22
23/* On a machine with IEEE extended-precision registers, it is
24 * necessary to specify double-precision (53-bit) rounding precision
25 * before invoking strtod or dtoa. If the machine uses (the equivalent
26 * of) Intel 80x87 arithmetic, the call
27 * _control87(PC_53, MCW_PC);
28 * does this with many compilers. Whether this or another call is
29 * appropriate depends on the compiler; for this to work, it may be
30 * necessary to #include "float.h" or another system-dependent header
31 * file.
32 */
33
34/* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
35 *
36 * This strtod returns a nearest machine number to the input decimal
37 * string (or sets errno to ERANGE). With IEEE arithmetic, ties are
38 * broken by the IEEE round-even rule. Otherwise ties are broken by
39 * biased rounding (add half and chop).
40 *
41 * Inspired loosely by William D. Clinger's paper "How to Read Floating
42 * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
43 *
44 * Modifications:
45 *
46 * 1. We only require IEEE, IBM, or VAX double-precision
47 * arithmetic (not IEEE double-extended).
48 * 2. We get by with floating-point arithmetic in a case that
49 * Clinger missed -- when we're computing d * 10^n
50 * for a small integer d and the integer n is not too
51 * much larger than 22 (the maximum integer k for which
52 * we can represent 10^k exactly), we may be able to
53 * compute (d*10^k) * 10^(e-k) with just one roundoff.
54 * 3. Rather than a bit-at-a-time adjustment of the binary
55 * result in the hard case, we use floating-point
56 * arithmetic to determine the adjustment to within
57 * one bit; only in really hard cases do we need to
58 * compute a second residual.
59 * 4. Because of 3., we don't need a large table of powers of 10
60 * for ten-to-e (just some small tables, e.g. of 10^k
61 * for 0 <= k <= 22).
62 */
63
64/*
65 * #define IEEE_LITTLE_ENDIAN for IEEE-arithmetic machines where the least
66 * significant byte has the lowest address.
67 * #define IEEE_BIG_ENDIAN for IEEE-arithmetic machines where the most
68 * significant byte has the lowest address.
69 * #define Long int on machines with 32-bit ints and 64-bit longs.
70 * #define IBM for IBM mainframe-style floating-point arithmetic.
71 * #define VAX for VAX-style floating-point arithmetic (D_floating).
72 * #define No_leftright to omit left-right logic in fast floating-point
73 * computation of dtoa.
74 * #define Honor_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3
75 * and strtod and dtoa should round accordingly.
76 * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3
77 * and Honor_FLT_ROUNDS is not #defined.
78 * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
79 * that use extended-precision instructions to compute rounded
80 * products and quotients) with IBM.
81 * #define ROUND_BIASED for IEEE-format with biased rounding.
82 * #define Inaccurate_Divide for IEEE-format with correctly rounded
83 * products but inaccurate quotients, e.g., for Intel i860.
84 * #define NO_LONG_LONG on machines that do not have a "long long"
85 * integer type (of >= 64 bits). On such machines, you can
86 * #define Just_16 to store 16 bits per 32-bit Long when doing
87 * high-precision integer arithmetic. Whether this speeds things
88 * up or slows things down depends on the machine and the number
89 * being converted. If long long is available and the name is
90 * something other than "long long", #define Llong to be the name,
91 * and if "unsigned Llong" does not work as an unsigned version of
92 * Llong, #define #ULLong to be the corresponding unsigned type.
93 * #define KR_headers for old-style C function headers.
94 * #define Bad_float_h if your system lacks a float.h or if it does not
95 * define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
96 * FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
97 * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
98 * if memory is available and otherwise does something you deem
99 * appropriate. If MALLOC is undefined, malloc will be invoked
100 * directly -- and assumed always to succeed.
101 * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making
102 * memory allocations from a private pool of memory when possible.
103 * When used, the private pool is PRIVATE_MEM bytes long: 2304 bytes,
104 * unless #defined to be a different length. This default length
105 * suffices to get rid of MALLOC calls except for unusual cases,
106 * such as decimal-to-binary conversion of a very long string of
107 * digits. The longest string dtoa can return is about 751 bytes
108 * long. For conversions by strtod of strings of 800 digits and
109 * all dtoa conversions in single-threaded executions with 8-byte
110 * pointers, PRIVATE_MEM >= 7400 appears to suffice; with 4-byte
111 * pointers, PRIVATE_MEM >= 7112 appears adequate.
112 * #define INFNAN_CHECK on IEEE systems to cause strtod to check for
113 * Infinity and NaN (case insensitively). On some systems (e.g.,
114 * some HP systems), it may be necessary to #define NAN_WORD0
115 * appropriately -- to the most significant word of a quiet NaN.
116 * (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.)
117 * When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined,
118 * strtod also accepts (case insensitively) strings of the form
119 * NaN(x), where x is a string of hexadecimal digits and spaces;
120 * if there is only one string of hexadecimal digits, it is taken
121 * for the 52 fraction bits of the resulting NaN; if there are two
122 * or more strings of hex digits, the first is for the high 20 bits,
123 * the second and subsequent for the low 32 bits, with intervening
124 * white space ignored; but if this results in none of the 52
125 * fraction bits being on (an IEEE Infinity symbol), then NAN_WORD0
126 * and NAN_WORD1 are used instead.
127 * #define MULTIPLE_THREADS if the system offers preemptively scheduled
128 * multiple threads. In this case, you must provide (or suitably
129 * #define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed
130 * by FREE_DTOA_LOCK(n) for n = 0 or 1. (The second lock, accessed
131 * in pow5mult, ensures lazy evaluation of only one copy of high
132 * powers of 5; omitting this lock would introduce a small
133 * probability of wasting memory, but would otherwise be harmless.)
134 * You must also invoke freedtoa(s) to free the value s returned by
135 * dtoa. You may do so whether or not MULTIPLE_THREADS is #defined.
136 * #define NO_IEEE_Scale to disable new (Feb. 1997) logic in strtod that
137 * avoids underflows on inputs whose result does not underflow.
138 * If you #define NO_IEEE_Scale on a machine that uses IEEE-format
139 * floating-point numbers and flushes underflows to zero rather
140 * than implementing gradual underflow, then you must also #define
141 * Sudden_Underflow.
142 * #define YES_ALIAS to permit aliasing certain double values with
143 * arrays of ULongs. This leads to slightly better code with
144 * some compilers and was always used prior to 19990916, but it
145 * is not strictly legal and can cause trouble with aggressively
146 * optimizing compilers (e.g., gcc 2.95.1 under -O2).
147 * #define USE_LOCALE to use the current locale's decimal_point value.
148 * #define SET_INEXACT if IEEE arithmetic is being used and extra
149 * computation should be done to set the inexact flag when the
150 * result is inexact and avoid setting inexact when the result
151 * is exact. In this case, dtoa.c must be compiled in
152 * an environment, perhaps provided by #include "dtoa.c" in a
153 * suitable wrapper, that defines two functions,
154 * int get_inexact(void);
155 * void clear_inexact(void);
156 * such that get_inexact() returns a nonzero value if the
157 * inexact bit is already set, and clear_inexact() sets the
158 * inexact bit to 0. When SET_INEXACT is #defined, strtod
159 * also does extra computations to set the underflow and overflow
160 * flags when appropriate (i.e., when the result is tiny and
161 * inexact or when it is a numeric value rounded to +-infinity).
162 * #define NO_ERRNO if strtod should not assign errno = ERANGE when
163 * the result overflows to +-Infinity or underflows to 0.
164 */
165
166#ifdef WORDS_BIGENDIAN
167#define IEEE_BIG_ENDIAN
168#else
169#define IEEE_LITTLE_ENDIAN
170#endif
171
172#ifdef __vax__
173#define VAX
174#undef IEEE_BIG_ENDIAN
175#undef IEEE_LITTLE_ENDIAN
176#endif
177
178#if defined(__arm__) && !defined(__VFP_FP__)
179#define IEEE_BIG_ENDIAN
180#undef IEEE_LITTLE_ENDIAN
181#endif
182
183#undef Long
184#undef ULong
185
186#include <assert.h>
187#include <limits.h>
188#include <stddef.h>
189#include <stdint.h>
190
191#if (INT_MAX >> 30) && !(INT_MAX >> 31)
192#define Long int
193#define ULong unsigned int
194#elif (LONG_MAX >> 30) && !(LONG_MAX >> 31)
195#define Long long int
196#define ULong unsigned long int
197#else
198#error No 32bit integer
199#endif
200
201#if defined(HAVE_LONG_LONG) && (HAVE_LONG_LONG)
202#define Llong LONG_LONG
203#else
204#define NO_LONG_LONG
205#endif
206
207#ifdef DEBUG
208#include <stdio.h>
209#define Bug(x) {fprintf(stderr, "%s\n", (x)); exit(EXIT_FAILURE);}
210#endif
211
212#ifndef ISDIGIT
213#include <ctype.h>
214#define ISDIGIT(c) isdigit(c)
215#endif
216#include <errno.h>
217#include <stdlib.h>
218#include <string.h>
219
220#ifdef USE_LOCALE
221#include <locale.h>
222#endif
223
224#ifdef MALLOC
225extern void *MALLOC(size_t);
226#else
227#define MALLOC malloc
228#endif
229#ifdef FREE
230extern void FREE(void*);
231#else
232#define FREE free
233#endif
234#ifndef NO_SANITIZE
235#define NO_SANITIZE(x, y) y
236#endif
237
238#ifndef Omit_Private_Memory
239#ifndef PRIVATE_MEM
240#define PRIVATE_MEM 2304
241#endif
242#define PRIVATE_mem ((PRIVATE_MEM+sizeof(double)-1)/sizeof(double))
243static double private_mem[PRIVATE_mem], *pmem_next = private_mem;
244#endif
245
246#undef IEEE_Arith
247#undef Avoid_Underflow
248#ifdef IEEE_BIG_ENDIAN
249#define IEEE_Arith
250#endif
251#ifdef IEEE_LITTLE_ENDIAN
252#define IEEE_Arith
253#endif
254
255#ifdef Bad_float_h
256
257#ifdef IEEE_Arith
258#define DBL_DIG 15
259#define DBL_MAX_10_EXP 308
260#define DBL_MAX_EXP 1024
261#define FLT_RADIX 2
262#endif /*IEEE_Arith*/
263
264#ifdef IBM
265#define DBL_DIG 16
266#define DBL_MAX_10_EXP 75
267#define DBL_MAX_EXP 63
268#define FLT_RADIX 16
269#define DBL_MAX 7.2370055773322621e+75
270#endif
271
272#ifdef VAX
273#define DBL_DIG 16
274#define DBL_MAX_10_EXP 38
275#define DBL_MAX_EXP 127
276#define FLT_RADIX 2
277#define DBL_MAX 1.7014118346046923e+38
278#endif
279
280#ifndef LONG_MAX
281#define LONG_MAX 2147483647
282#endif
283
284#else /* ifndef Bad_float_h */
285#include <float.h>
286#endif /* Bad_float_h */
287
288#include <math.h>
289
290#ifdef __cplusplus
291extern "C" {
292#if 0
293} /* satisfy cc-mode */
294#endif
295#endif
296
297#ifndef hexdigit
298static const char hexdigit[] = "0123456789abcdef0123456789ABCDEF";
299#endif
300
301#if defined(IEEE_LITTLE_ENDIAN) + defined(IEEE_BIG_ENDIAN) + defined(VAX) + defined(IBM) != 1
302Exactly one of IEEE_LITTLE_ENDIAN, IEEE_BIG_ENDIAN, VAX, or IBM should be defined.
303#endif
304
305typedef union { double d; ULong L[2]; } U;
306
307#ifdef YES_ALIAS
308typedef double double_u;
309# define dval(x) (x)
310# ifdef IEEE_LITTLE_ENDIAN
311# define word0(x) (((ULong *)&(x))[1])
312# define word1(x) (((ULong *)&(x))[0])
313# else
314# define word0(x) (((ULong *)&(x))[0])
315# define word1(x) (((ULong *)&(x))[1])
316# endif
317#else
318typedef U double_u;
319# ifdef IEEE_LITTLE_ENDIAN
320# define word0(x) ((x).L[1])
321# define word1(x) ((x).L[0])
322# else
323# define word0(x) ((x).L[0])
324# define word1(x) ((x).L[1])
325# endif
326# define dval(x) ((x).d)
327#endif
328
329/* The following definition of Storeinc is appropriate for MIPS processors.
330 * An alternative that might be better on some machines is
331 * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
332 */
333#if defined(IEEE_LITTLE_ENDIAN) + defined(VAX) + defined(__arm__)
334#define Storeinc(a,b,c) (((unsigned short *)(a))[1] = (unsigned short)(b), \
335((unsigned short *)(a))[0] = (unsigned short)(c), (a)++)
336#else
337#define Storeinc(a,b,c) (((unsigned short *)(a))[0] = (unsigned short)(b), \
338((unsigned short *)(a))[1] = (unsigned short)(c), (a)++)
339#endif
340
341/* #define P DBL_MANT_DIG */
342/* Ten_pmax = floor(P*log(2)/log(5)) */
343/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
344/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
345/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
346
347#ifdef IEEE_Arith
348#define Exp_shift 20
349#define Exp_shift1 20
350#define Exp_msk1 0x100000
351#define Exp_msk11 0x100000
352#define Exp_mask 0x7ff00000
353#define P 53
354#define Bias 1023
355#define Emin (-1022)
356#define Exp_1 0x3ff00000
357#define Exp_11 0x3ff00000
358#define Ebits 11
359#define Frac_mask 0xfffff
360#define Frac_mask1 0xfffff
361#define Ten_pmax 22
362#define Bletch 0x10
363#define Bndry_mask 0xfffff
364#define Bndry_mask1 0xfffff
365#define LSB 1
366#define Sign_bit 0x80000000
367#define Log2P 1
368#define Tiny0 0
369#define Tiny1 1
370#define Quick_max 14
371#define Int_max 14
372#ifndef NO_IEEE_Scale
373#define Avoid_Underflow
374#ifdef Flush_Denorm /* debugging option */
375#undef Sudden_Underflow
376#endif
377#endif
378
379#ifndef Flt_Rounds
380#ifdef FLT_ROUNDS
381#define Flt_Rounds FLT_ROUNDS
382#else
383#define Flt_Rounds 1
384#endif
385#endif /*Flt_Rounds*/
386
387#ifdef Honor_FLT_ROUNDS
388#define Rounding rounding
389#undef Check_FLT_ROUNDS
390#define Check_FLT_ROUNDS
391#else
392#define Rounding Flt_Rounds
393#endif
394
395#else /* ifndef IEEE_Arith */
396#undef Check_FLT_ROUNDS
397#undef Honor_FLT_ROUNDS
398#undef SET_INEXACT
399#undef Sudden_Underflow
400#define Sudden_Underflow
401#ifdef IBM
402#undef Flt_Rounds
403#define Flt_Rounds 0
404#define Exp_shift 24
405#define Exp_shift1 24
406#define Exp_msk1 0x1000000
407#define Exp_msk11 0x1000000
408#define Exp_mask 0x7f000000
409#define P 14
410#define Bias 65
411#define Exp_1 0x41000000
412#define Exp_11 0x41000000
413#define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */
414#define Frac_mask 0xffffff
415#define Frac_mask1 0xffffff
416#define Bletch 4
417#define Ten_pmax 22
418#define Bndry_mask 0xefffff
419#define Bndry_mask1 0xffffff
420#define LSB 1
421#define Sign_bit 0x80000000
422#define Log2P 4
423#define Tiny0 0x100000
424#define Tiny1 0
425#define Quick_max 14
426#define Int_max 15
427#else /* VAX */
428#undef Flt_Rounds
429#define Flt_Rounds 1
430#define Exp_shift 23
431#define Exp_shift1 7
432#define Exp_msk1 0x80
433#define Exp_msk11 0x800000
434#define Exp_mask 0x7f80
435#define P 56
436#define Bias 129
437#define Exp_1 0x40800000
438#define Exp_11 0x4080
439#define Ebits 8
440#define Frac_mask 0x7fffff
441#define Frac_mask1 0xffff007f
442#define Ten_pmax 24
443#define Bletch 2
444#define Bndry_mask 0xffff007f
445#define Bndry_mask1 0xffff007f
446#define LSB 0x10000
447#define Sign_bit 0x8000
448#define Log2P 1
449#define Tiny0 0x80
450#define Tiny1 0
451#define Quick_max 15
452#define Int_max 15
453#endif /* IBM, VAX */
454#endif /* IEEE_Arith */
455
456#ifndef IEEE_Arith
457#define ROUND_BIASED
458#endif
459
460#ifdef RND_PRODQUOT
461#define rounded_product(a,b) ((a) = rnd_prod((a), (b)))
462#define rounded_quotient(a,b) ((a) = rnd_quot((a), (b)))
463extern double rnd_prod(double, double), rnd_quot(double, double);
464#else
465#define rounded_product(a,b) ((a) *= (b))
466#define rounded_quotient(a,b) ((a) /= (b))
467#endif
468
469#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
470#define Big1 0xffffffff
471
472#ifndef Pack_32
473#define Pack_32
474#endif
475
476#define FFFFFFFF 0xffffffffUL
477
478#ifdef NO_LONG_LONG
479#undef ULLong
480#ifdef Just_16
481#undef Pack_32
482/* When Pack_32 is not defined, we store 16 bits per 32-bit Long.
483 * This makes some inner loops simpler and sometimes saves work
484 * during multiplications, but it often seems to make things slightly
485 * slower. Hence the default is now to store 32 bits per Long.
486 */
487#endif
488#else /* long long available */
489#ifndef Llong
490#define Llong long long
491#endif
492#ifndef ULLong
493#define ULLong unsigned Llong
494#endif
495#endif /* NO_LONG_LONG */
496
497#define MULTIPLE_THREADS 1
498
499#ifndef MULTIPLE_THREADS
500#define ACQUIRE_DTOA_LOCK(n) /*nothing*/
501#define FREE_DTOA_LOCK(n) /*nothing*/
502#else
503#define ACQUIRE_DTOA_LOCK(n) /*unused right now*/
504#define FREE_DTOA_LOCK(n) /*unused right now*/
505#endif
506
507#ifndef ATOMIC_PTR_CAS
508#define ATOMIC_PTR_CAS(var, old, new) ((var) = (new), (void *)(old))
509#endif
510#ifndef LIKELY
511#define LIKELY(x) (x)
512#endif
513#ifndef UNLIKELY
514#define UNLIKELY(x) (x)
515#endif
516#ifndef ASSUME
517#define ASSUME(x) (void)(x)
518#endif
519
520#define Kmax 15
521
522struct Bigint {
523 struct Bigint *next;
524 int k, maxwds, sign, wds;
525 ULong x[1];
526};
527
528typedef struct Bigint Bigint;
529
530static Bigint *freelist[Kmax+1];
531
532#define BLOCKING_BIGINT ((Bigint *)(-1))
533
534static Bigint *
535Balloc(int k)
536{
537 int x;
538 Bigint *rv;
539#ifndef Omit_Private_Memory
540 size_t len;
541#endif
542
543 rv = 0;
544 ACQUIRE_DTOA_LOCK(0);
545 if (k <= Kmax) {
546 rv = freelist[k];
547 while (rv) {
548 Bigint *rvn = rv;
549 rv = ATOMIC_PTR_CAS(freelist[k], rv, BLOCKING_BIGINT);
550 if (LIKELY(rv != BLOCKING_BIGINT && rvn == rv)) {
551 rvn = ATOMIC_PTR_CAS(freelist[k], BLOCKING_BIGINT, rv->next);
552 assert(rvn == BLOCKING_BIGINT);
553 ASSUME(rv);
554 break;
555 }
556 }
557 }
558 if (!rv) {
559 x = 1 << k;
560#ifdef Omit_Private_Memory
561 rv = (Bigint *)MALLOC(sizeof(Bigint) + (x-1)*sizeof(ULong));
562#else
563 len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1)
564 /sizeof(double);
565 if (k <= Kmax) {
566 double *pnext = pmem_next;
567 while (pnext - private_mem + len <= PRIVATE_mem) {
568 double *p = pnext;
569 pnext = ATOMIC_PTR_CAS(pmem_next, pnext, pnext + len);
570 if (LIKELY(p == pnext)) {
571 rv = (Bigint*)pnext;
572 ASSUME(rv);
573 break;
574 }
575 }
576 }
577 if (!rv)
578 rv = (Bigint*)MALLOC(len*sizeof(double));
579#endif
580 rv->k = k;
581 rv->maxwds = x;
582 }
583 FREE_DTOA_LOCK(0);
584 rv->sign = rv->wds = 0;
585 return rv;
586}
587
588static void
589Bfree(Bigint *v)
590{
591 Bigint *vn;
592 if (v) {
593 if (v->k > Kmax) {
594 FREE(v);
595 return;
596 }
597 ACQUIRE_DTOA_LOCK(0);
598 do {
599 do {
600 vn = ATOMIC_PTR_CAS(freelist[v->k], 0, 0);
601 } while (UNLIKELY(vn == BLOCKING_BIGINT));
602 v->next = vn;
603 } while (UNLIKELY(ATOMIC_PTR_CAS(freelist[v->k], vn, v) != vn));
604 FREE_DTOA_LOCK(0);
605 }
606}
607
608#define Bcopy(x,y) memcpy((char *)&(x)->sign, (char *)&(y)->sign, \
609(y)->wds*sizeof(Long) + 2*sizeof(int))
610
611static Bigint *
612multadd(Bigint *b, int m, int a) /* multiply by m and add a */
613{
614 int i, wds;
615 ULong *x;
616#ifdef ULLong
617 ULLong carry, y;
618#else
619 ULong carry, y;
620#ifdef Pack_32
621 ULong xi, z;
622#endif
623#endif
624 Bigint *b1;
625
626 wds = b->wds;
627 x = b->x;
628 i = 0;
629 carry = a;
630 do {
631#ifdef ULLong
632 y = *x * (ULLong)m + carry;
633 carry = y >> 32;
634 *x++ = (ULong)(y & FFFFFFFF);
635#else
636#ifdef Pack_32
637 xi = *x;
638 y = (xi & 0xffff) * m + carry;
639 z = (xi >> 16) * m + (y >> 16);
640 carry = z >> 16;
641 *x++ = (z << 16) + (y & 0xffff);
642#else
643 y = *x * m + carry;
644 carry = y >> 16;
645 *x++ = y & 0xffff;
646#endif
647#endif
648 } while (++i < wds);
649 if (carry) {
650 if (wds >= b->maxwds) {
651 b1 = Balloc(b->k+1);
652 Bcopy(b1, b);
653 Bfree(b);
654 b = b1;
655 }
656 b->x[wds++] = (ULong)carry;
657 b->wds = wds;
658 }
659 return b;
660}
661
662static Bigint *
663s2b(const char *s, int nd0, int nd, ULong y9)
664{
665 Bigint *b;
666 int i, k;
667 Long x, y;
668
669 x = (nd + 8) / 9;
670 for (k = 0, y = 1; x > y; y <<= 1, k++) ;
671#ifdef Pack_32
672 b = Balloc(k);
673 b->x[0] = y9;
674 b->wds = 1;
675#else
676 b = Balloc(k+1);
677 b->x[0] = y9 & 0xffff;
678 b->wds = (b->x[1] = y9 >> 16) ? 2 : 1;
679#endif
680
681 i = 9;
682 if (9 < nd0) {
683 s += 9;
684 do {
685 b = multadd(b, 10, *s++ - '0');
686 } while (++i < nd0);
687 s++;
688 }
689 else
690 s += 10;
691 for (; i < nd; i++)
692 b = multadd(b, 10, *s++ - '0');
693 return b;
694}
695
696static int
697hi0bits(register ULong x)
698{
699 register int k = 0;
700
701 if (!(x & 0xffff0000)) {
702 k = 16;
703 x <<= 16;
704 }
705 if (!(x & 0xff000000)) {
706 k += 8;
707 x <<= 8;
708 }
709 if (!(x & 0xf0000000)) {
710 k += 4;
711 x <<= 4;
712 }
713 if (!(x & 0xc0000000)) {
714 k += 2;
715 x <<= 2;
716 }
717 if (!(x & 0x80000000)) {
718 k++;
719 if (!(x & 0x40000000))
720 return 32;
721 }
722 return k;
723}
724
725static int
726lo0bits(ULong *y)
727{
728 register int k;
729 register ULong x = *y;
730
731 if (x & 7) {
732 if (x & 1)
733 return 0;
734 if (x & 2) {
735 *y = x >> 1;
736 return 1;
737 }
738 *y = x >> 2;
739 return 2;
740 }
741 k = 0;
742 if (!(x & 0xffff)) {
743 k = 16;
744 x >>= 16;
745 }
746 if (!(x & 0xff)) {
747 k += 8;
748 x >>= 8;
749 }
750 if (!(x & 0xf)) {
751 k += 4;
752 x >>= 4;
753 }
754 if (!(x & 0x3)) {
755 k += 2;
756 x >>= 2;
757 }
758 if (!(x & 1)) {
759 k++;
760 x >>= 1;
761 if (!x)
762 return 32;
763 }
764 *y = x;
765 return k;
766}
767
768static Bigint *
769i2b(int i)
770{
771 Bigint *b;
772
773 b = Balloc(1);
774 b->x[0] = i;
775 b->wds = 1;
776 return b;
777}
778
779static Bigint *
780mult(Bigint *a, Bigint *b)
781{
782 Bigint *c;
783 int k, wa, wb, wc;
784 ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0;
785 ULong y;
786#ifdef ULLong
787 ULLong carry, z;
788#else
789 ULong carry, z;
790#ifdef Pack_32
791 ULong z2;
792#endif
793#endif
794
795 if (a->wds < b->wds) {
796 c = a;
797 a = b;
798 b = c;
799 }
800 k = a->k;
801 wa = a->wds;
802 wb = b->wds;
803 wc = wa + wb;
804 if (wc > a->maxwds)
805 k++;
806 c = Balloc(k);
807 for (x = c->x, xa = x + wc; x < xa; x++)
808 *x = 0;
809 xa = a->x;
810 xae = xa + wa;
811 xb = b->x;
812 xbe = xb + wb;
813 xc0 = c->x;
814#ifdef ULLong
815 for (; xb < xbe; xc0++) {
816 if ((y = *xb++) != 0) {
817 x = xa;
818 xc = xc0;
819 carry = 0;
820 do {
821 z = *x++ * (ULLong)y + *xc + carry;
822 carry = z >> 32;
823 *xc++ = (ULong)(z & FFFFFFFF);
824 } while (x < xae);
825 *xc = (ULong)carry;
826 }
827 }
828#else
829#ifdef Pack_32
830 for (; xb < xbe; xb++, xc0++) {
831 if ((y = *xb & 0xffff) != 0) {
832 x = xa;
833 xc = xc0;
834 carry = 0;
835 do {
836 z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
837 carry = z >> 16;
838 z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
839 carry = z2 >> 16;
840 Storeinc(xc, z2, z);
841 } while (x < xae);
842 *xc = (ULong)carry;
843 }
844 if ((y = *xb >> 16) != 0) {
845 x = xa;
846 xc = xc0;
847 carry = 0;
848 z2 = *xc;
849 do {
850 z = (*x & 0xffff) * y + (*xc >> 16) + carry;
851 carry = z >> 16;
852 Storeinc(xc, z, z2);
853 z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
854 carry = z2 >> 16;
855 } while (x < xae);
856 *xc = z2;
857 }
858 }
859#else
860 for (; xb < xbe; xc0++) {
861 if (y = *xb++) {
862 x = xa;
863 xc = xc0;
864 carry = 0;
865 do {
866 z = *x++ * y + *xc + carry;
867 carry = z >> 16;
868 *xc++ = z & 0xffff;
869 } while (x < xae);
870 *xc = (ULong)carry;
871 }
872 }
873#endif
874#endif
875 for (xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;
876 c->wds = wc;
877 return c;
878}
879
880static Bigint *p5s;
881
882static Bigint *
883pow5mult(Bigint *b, int k)
884{
885 Bigint *b1, *p5, *p51;
886 Bigint *p5tmp;
887 int i;
888 static const int p05[3] = { 5, 25, 125 };
889
890 if ((i = k & 3) != 0)
891 b = multadd(b, p05[i-1], 0);
892
893 if (!(k >>= 2))
894 return b;
895 if (!(p5 = p5s)) {
896 /* first time */
897 ACQUIRE_DTOA_LOCK(1);
898 if (!(p5 = p5s)) {
899 p5 = i2b(625);
900 p5->next = 0;
901 p5tmp = ATOMIC_PTR_CAS(p5s, NULL, p5);
902 if (UNLIKELY(p5tmp)) {
903 Bfree(p5);
904 p5 = p5tmp;
905 }
906 }
907 FREE_DTOA_LOCK(1);
908 }
909 for (;;) {
910 if (k & 1) {
911 b1 = mult(b, p5);
912 Bfree(b);
913 b = b1;
914 }
915 if (!(k >>= 1))
916 break;
917 if (!(p51 = p5->next)) {
918 ACQUIRE_DTOA_LOCK(1);
919 if (!(p51 = p5->next)) {
920 p51 = mult(p5,p5);
921 p51->next = 0;
922 p5tmp = ATOMIC_PTR_CAS(p5->next, NULL, p51);
923 if (UNLIKELY(p5tmp)) {
924 Bfree(p51);
925 p51 = p5tmp;
926 }
927 }
928 FREE_DTOA_LOCK(1);
929 }
930 p5 = p51;
931 }
932 return b;
933}
934
935static Bigint *
936lshift(Bigint *b, int k)
937{
938 int i, k1, n, n1;
939 Bigint *b1;
940 ULong *x, *x1, *xe, z;
941
942#ifdef Pack_32
943 n = k >> 5;
944#else
945 n = k >> 4;
946#endif
947 k1 = b->k;
948 n1 = n + b->wds + 1;
949 for (i = b->maxwds; n1 > i; i <<= 1)
950 k1++;
951 b1 = Balloc(k1);
952 x1 = b1->x;
953 for (i = 0; i < n; i++)
954 *x1++ = 0;
955 x = b->x;
956 xe = x + b->wds;
957#ifdef Pack_32
958 if (k &= 0x1f) {
959 k1 = 32 - k;
960 z = 0;
961 do {
962 *x1++ = *x << k | z;
963 z = *x++ >> k1;
964 } while (x < xe);
965 if ((*x1 = z) != 0)
966 ++n1;
967 }
968#else
969 if (k &= 0xf) {
970 k1 = 16 - k;
971 z = 0;
972 do {
973 *x1++ = *x << k & 0xffff | z;
974 z = *x++ >> k1;
975 } while (x < xe);
976 if (*x1 = z)
977 ++n1;
978 }
979#endif
980 else
981 do {
982 *x1++ = *x++;
983 } while (x < xe);
984 b1->wds = n1 - 1;
985 Bfree(b);
986 return b1;
987}
988
989static int
990cmp(Bigint *a, Bigint *b)
991{
992 ULong *xa, *xa0, *xb, *xb0;
993 int i, j;
994
995 i = a->wds;
996 j = b->wds;
997#ifdef DEBUG
998 if (i > 1 && !a->x[i-1])
999 Bug("cmp called with a->x[a->wds-1] == 0");
1000 if (j > 1 && !b->x[j-1])
1001 Bug("cmp called with b->x[b->wds-1] == 0");
1002#endif
1003 if (i -= j)
1004 return i;
1005 xa0 = a->x;
1006 xa = xa0 + j;
1007 xb0 = b->x;
1008 xb = xb0 + j;
1009 for (;;) {
1010 if (*--xa != *--xb)
1011 return *xa < *xb ? -1 : 1;
1012 if (xa <= xa0)
1013 break;
1014 }
1015 return 0;
1016}
1017
1018NO_SANITIZE("unsigned-integer-overflow", static Bigint * diff(Bigint *a, Bigint *b));
1019static Bigint *
1020diff(Bigint *a, Bigint *b)
1021{
1022 Bigint *c;
1023 int i, wa, wb;
1024 ULong *xa, *xae, *xb, *xbe, *xc;
1025#ifdef ULLong
1026 ULLong borrow, y;
1027#else
1028 ULong borrow, y;
1029#ifdef Pack_32
1030 ULong z;
1031#endif
1032#endif
1033
1034 i = cmp(a,b);
1035 if (!i) {
1036 c = Balloc(0);
1037 c->wds = 1;
1038 c->x[0] = 0;
1039 return c;
1040 }
1041 if (i < 0) {
1042 c = a;
1043 a = b;
1044 b = c;
1045 i = 1;
1046 }
1047 else
1048 i = 0;
1049 c = Balloc(a->k);
1050 c->sign = i;
1051 wa = a->wds;
1052 xa = a->x;
1053 xae = xa + wa;
1054 wb = b->wds;
1055 xb = b->x;
1056 xbe = xb + wb;
1057 xc = c->x;
1058 borrow = 0;
1059#ifdef ULLong
1060 do {
1061 y = (ULLong)*xa++ - *xb++ - borrow;
1062 borrow = y >> 32 & (ULong)1;
1063 *xc++ = (ULong)(y & FFFFFFFF);
1064 } while (xb < xbe);
1065 while (xa < xae) {
1066 y = *xa++ - borrow;
1067 borrow = y >> 32 & (ULong)1;
1068 *xc++ = (ULong)(y & FFFFFFFF);
1069 }
1070#else
1071#ifdef Pack_32
1072 do {
1073 y = (*xa & 0xffff) - (*xb & 0xffff) - borrow;
1074 borrow = (y & 0x10000) >> 16;
1075 z = (*xa++ >> 16) - (*xb++ >> 16) - borrow;
1076 borrow = (z & 0x10000) >> 16;
1077 Storeinc(xc, z, y);
1078 } while (xb < xbe);
1079 while (xa < xae) {
1080 y = (*xa & 0xffff) - borrow;
1081 borrow = (y & 0x10000) >> 16;
1082 z = (*xa++ >> 16) - borrow;
1083 borrow = (z & 0x10000) >> 16;
1084 Storeinc(xc, z, y);
1085 }
1086#else
1087 do {
1088 y = *xa++ - *xb++ - borrow;
1089 borrow = (y & 0x10000) >> 16;
1090 *xc++ = y & 0xffff;
1091 } while (xb < xbe);
1092 while (xa < xae) {
1093 y = *xa++ - borrow;
1094 borrow = (y & 0x10000) >> 16;
1095 *xc++ = y & 0xffff;
1096 }
1097#endif
1098#endif
1099 while (!*--xc)
1100 wa--;
1101 c->wds = wa;
1102 return c;
1103}
1104
1105static double
1106ulp(double x_)
1107{
1108 register Long L;
1109 double_u x, a;
1110 dval(x) = x_;
1111
1112 L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
1113#ifndef Avoid_Underflow
1114#ifndef Sudden_Underflow
1115 if (L > 0) {
1116#endif
1117#endif
1118#ifdef IBM
1119 L |= Exp_msk1 >> 4;
1120#endif
1121 word0(a) = L;
1122 word1(a) = 0;
1123#ifndef Avoid_Underflow
1124#ifndef Sudden_Underflow
1125 }
1126 else {
1127 L = -L >> Exp_shift;
1128 if (L < Exp_shift) {
1129 word0(a) = 0x80000 >> L;
1130 word1(a) = 0;
1131 }
1132 else {
1133 word0(a) = 0;
1134 L -= Exp_shift;
1135 word1(a) = L >= 31 ? 1 : 1 << 31 - L;
1136 }
1137 }
1138#endif
1139#endif
1140 return dval(a);
1141}
1142
1143static double
1144b2d(Bigint *a, int *e)
1145{
1146 ULong *xa, *xa0, w, y, z;
1147 int k;
1148 double_u d;
1149#ifdef VAX
1150 ULong d0, d1;
1151#else
1152#define d0 word0(d)
1153#define d1 word1(d)
1154#endif
1155
1156 xa0 = a->x;
1157 xa = xa0 + a->wds;
1158 y = *--xa;
1159#ifdef DEBUG
1160 if (!y) Bug("zero y in b2d");
1161#endif
1162 k = hi0bits(y);
1163 *e = 32 - k;
1164#ifdef Pack_32
1165 if (k < Ebits) {
1166 d0 = Exp_1 | y >> (Ebits - k);
1167 w = xa > xa0 ? *--xa : 0;
1168 d1 = y << ((32-Ebits) + k) | w >> (Ebits - k);
1169 goto ret_d;
1170 }
1171 z = xa > xa0 ? *--xa : 0;
1172 if (k -= Ebits) {
1173 d0 = Exp_1 | y << k | z >> (32 - k);
1174 y = xa > xa0 ? *--xa : 0;
1175 d1 = z << k | y >> (32 - k);
1176 }
1177 else {
1178 d0 = Exp_1 | y;
1179 d1 = z;
1180 }
1181#else
1182 if (k < Ebits + 16) {
1183 z = xa > xa0 ? *--xa : 0;
1184 d0 = Exp_1 | y << k - Ebits | z >> Ebits + 16 - k;
1185 w = xa > xa0 ? *--xa : 0;
1186 y = xa > xa0 ? *--xa : 0;
1187 d1 = z << k + 16 - Ebits | w << k - Ebits | y >> 16 + Ebits - k;
1188 goto ret_d;
1189 }
1190 z = xa > xa0 ? *--xa : 0;
1191 w = xa > xa0 ? *--xa : 0;
1192 k -= Ebits + 16;
1193 d0 = Exp_1 | y << k + 16 | z << k | w >> 16 - k;
1194 y = xa > xa0 ? *--xa : 0;
1195 d1 = w << k + 16 | y << k;
1196#endif
1197ret_d:
1198#ifdef VAX
1199 word0(d) = d0 >> 16 | d0 << 16;
1200 word1(d) = d1 >> 16 | d1 << 16;
1201#else
1202#undef d0
1203#undef d1
1204#endif
1205 return dval(d);
1206}
1207
1208static Bigint *
1209d2b(double d_, int *e, int *bits)
1210{
1211 double_u d;
1212 Bigint *b;
1213 int de, k;
1214 ULong *x, y, z;
1215#ifndef Sudden_Underflow
1216 int i;
1217#endif
1218#ifdef VAX
1219 ULong d0, d1;
1220#endif
1221 dval(d) = d_;
1222#ifdef VAX
1223 d0 = word0(d) >> 16 | word0(d) << 16;
1224 d1 = word1(d) >> 16 | word1(d) << 16;
1225#else
1226#define d0 word0(d)
1227#define d1 word1(d)
1228#endif
1229
1230#ifdef Pack_32
1231 b = Balloc(1);
1232#else
1233 b = Balloc(2);
1234#endif
1235 x = b->x;
1236
1237 z = d0 & Frac_mask;
1238 d0 &= 0x7fffffff; /* clear sign bit, which we ignore */
1239#ifdef Sudden_Underflow
1240 de = (int)(d0 >> Exp_shift);
1241#ifndef IBM
1242 z |= Exp_msk11;
1243#endif
1244#else
1245 if ((de = (int)(d0 >> Exp_shift)) != 0)
1246 z |= Exp_msk1;
1247#endif
1248#ifdef Pack_32
1249 if ((y = d1) != 0) {
1250 if ((k = lo0bits(&y)) != 0) {
1251 x[0] = y | z << (32 - k);
1252 z >>= k;
1253 }
1254 else
1255 x[0] = y;
1256#ifndef Sudden_Underflow
1257 i =
1258#endif
1259 b->wds = (x[1] = z) ? 2 : 1;
1260 }
1261 else {
1262#ifdef DEBUG
1263 if (!z)
1264 Bug("Zero passed to d2b");
1265#endif
1266 k = lo0bits(&z);
1267 x[0] = z;
1268#ifndef Sudden_Underflow
1269 i =
1270#endif
1271 b->wds = 1;
1272 k += 32;
1273 }
1274#else
1275 if (y = d1) {
1276 if (k = lo0bits(&y))
1277 if (k >= 16) {
1278 x[0] = y | z << 32 - k & 0xffff;
1279 x[1] = z >> k - 16 & 0xffff;
1280 x[2] = z >> k;
1281 i = 2;
1282 }
1283 else {
1284 x[0] = y & 0xffff;
1285 x[1] = y >> 16 | z << 16 - k & 0xffff;
1286 x[2] = z >> k & 0xffff;
1287 x[3] = z >> k+16;
1288 i = 3;
1289 }
1290 else {
1291 x[0] = y & 0xffff;
1292 x[1] = y >> 16;
1293 x[2] = z & 0xffff;
1294 x[3] = z >> 16;
1295 i = 3;
1296 }
1297 }
1298 else {
1299#ifdef DEBUG
1300 if (!z)
1301 Bug("Zero passed to d2b");
1302#endif
1303 k = lo0bits(&z);
1304 if (k >= 16) {
1305 x[0] = z;
1306 i = 0;
1307 }
1308 else {
1309 x[0] = z & 0xffff;
1310 x[1] = z >> 16;
1311 i = 1;
1312 }
1313 k += 32;
1314 }
1315 while (!x[i])
1316 --i;
1317 b->wds = i + 1;
1318#endif
1319#ifndef Sudden_Underflow
1320 if (de) {
1321#endif
1322#ifdef IBM
1323 *e = (de - Bias - (P-1) << 2) + k;
1324 *bits = 4*P + 8 - k - hi0bits(word0(d) & Frac_mask);
1325#else
1326 *e = de - Bias - (P-1) + k;
1327 *bits = P - k;
1328#endif
1329#ifndef Sudden_Underflow
1330 }
1331 else {
1332 *e = de - Bias - (P-1) + 1 + k;
1333#ifdef Pack_32
1334 *bits = 32*i - hi0bits(x[i-1]);
1335#else
1336 *bits = (i+2)*16 - hi0bits(x[i]);
1337#endif
1338 }
1339#endif
1340 return b;
1341}
1342#undef d0
1343#undef d1
1344
1345static double
1346ratio(Bigint *a, Bigint *b)
1347{
1348 double_u da, db;
1349 int k, ka, kb;
1350
1351 dval(da) = b2d(a, &ka);
1352 dval(db) = b2d(b, &kb);
1353#ifdef Pack_32
1354 k = ka - kb + 32*(a->wds - b->wds);
1355#else
1356 k = ka - kb + 16*(a->wds - b->wds);
1357#endif
1358#ifdef IBM
1359 if (k > 0) {
1360 word0(da) += (k >> 2)*Exp_msk1;
1361 if (k &= 3)
1362 dval(da) *= 1 << k;
1363 }
1364 else {
1365 k = -k;
1366 word0(db) += (k >> 2)*Exp_msk1;
1367 if (k &= 3)
1368 dval(db) *= 1 << k;
1369 }
1370#else
1371 if (k > 0)
1372 word0(da) += k*Exp_msk1;
1373 else {
1374 k = -k;
1375 word0(db) += k*Exp_msk1;
1376 }
1377#endif
1378 return dval(da) / dval(db);
1379}
1380
1381static const double
1382tens[] = {
1383 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
1384 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
1385 1e20, 1e21, 1e22
1386#ifdef VAX
1387 , 1e23, 1e24
1388#endif
1389};
1390
1391static const double
1392#ifdef IEEE_Arith
1393bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
1394static const double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128,
1395#ifdef Avoid_Underflow
1396 9007199254740992.*9007199254740992.e-256
1397 /* = 2^106 * 1e-53 */
1398#else
1399 1e-256
1400#endif
1401};
1402/* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */
1403/* flag unnecessarily. It leads to a song and dance at the end of strtod. */
1404#define Scale_Bit 0x10
1405#define n_bigtens 5
1406#else
1407#ifdef IBM
1408bigtens[] = { 1e16, 1e32, 1e64 };
1409static const double tinytens[] = { 1e-16, 1e-32, 1e-64 };
1410#define n_bigtens 3
1411#else
1412bigtens[] = { 1e16, 1e32 };
1413static const double tinytens[] = { 1e-16, 1e-32 };
1414#define n_bigtens 2
1415#endif
1416#endif
1417
1418#ifndef IEEE_Arith
1419#undef INFNAN_CHECK
1420#endif
1421
1422#ifdef INFNAN_CHECK
1423
1424#ifndef NAN_WORD0
1425#define NAN_WORD0 0x7ff80000
1426#endif
1427
1428#ifndef NAN_WORD1
1429#define NAN_WORD1 0
1430#endif
1431
1432static int
1433match(const char **sp, char *t)
1434{
1435 int c, d;
1436 const char *s = *sp;
1437
1438 while (d = *t++) {
1439 if ((c = *++s) >= 'A' && c <= 'Z')
1440 c += 'a' - 'A';
1441 if (c != d)
1442 return 0;
1443 }
1444 *sp = s + 1;
1445 return 1;
1446}
1447
1448#ifndef No_Hex_NaN
1449static void
1450hexnan(double *rvp, const char **sp)
1451{
1452 ULong c, x[2];
1453 const char *s;
1454 int havedig, udx0, xshift;
1455
1456 x[0] = x[1] = 0;
1457 havedig = xshift = 0;
1458 udx0 = 1;
1459 s = *sp;
1460 while (c = *(const unsigned char*)++s) {
1461 if (c >= '0' && c <= '9')
1462 c -= '0';
1463 else if (c >= 'a' && c <= 'f')
1464 c += 10 - 'a';
1465 else if (c >= 'A' && c <= 'F')
1466 c += 10 - 'A';
1467 else if (c <= ' ') {
1468 if (udx0 && havedig) {
1469 udx0 = 0;
1470 xshift = 1;
1471 }
1472 continue;
1473 }
1474 else if (/*(*/ c == ')' && havedig) {
1475 *sp = s + 1;
1476 break;
1477 }
1478 else
1479 return; /* invalid form: don't change *sp */
1480 havedig = 1;
1481 if (xshift) {
1482 xshift = 0;
1483 x[0] = x[1];
1484 x[1] = 0;
1485 }
1486 if (udx0)
1487 x[0] = (x[0] << 4) | (x[1] >> 28);
1488 x[1] = (x[1] << 4) | c;
1489 }
1490 if ((x[0] &= 0xfffff) || x[1]) {
1491 word0(*rvp) = Exp_mask | x[0];
1492 word1(*rvp) = x[1];
1493 }
1494}
1495#endif /*No_Hex_NaN*/
1496#endif /* INFNAN_CHECK */
1497
1498NO_SANITIZE("unsigned-integer-overflow", double strtod(const char *s00, char **se));
1499double
1500strtod(const char *s00, char **se)
1501{
1502#ifdef Avoid_Underflow
1503 int scale;
1504#endif
1505 int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, dsign,
1506 e, e1, esign, i, j, k, nd, nd0, nf, nz, nz0, sign;
1507 const char *s, *s0, *s1;
1508 double aadj, adj;
1509 double_u aadj1, rv, rv0;
1510 Long L;
1511 ULong y, z;
1512 Bigint *bb, *bb1, *bd, *bd0, *bs, *delta;
1513#ifdef SET_INEXACT
1514 int inexact, oldinexact;
1515#endif
1516#ifdef Honor_FLT_ROUNDS
1517 int rounding;
1518#endif
1519#ifdef USE_LOCALE
1520 const char *s2;
1521#endif
1522
1523 errno = 0;
1524 sign = nz0 = nz = 0;
1525 dval(rv) = 0.;
1526 for (s = s00;;s++)
1527 switch (*s) {
1528 case '-':
1529 sign = 1;
1530 /* no break */
1531 case '+':
1532 if (*++s)
1533 goto break2;
1534 /* no break */
1535 case 0:
1536 goto ret0;
1537 case '\t':
1538 case '\n':
1539 case '\v':
1540 case '\f':
1541 case '\r':
1542 case ' ':
1543 continue;
1544 default:
1545 goto break2;
1546 }
1547break2:
1548 if (*s == '0') {
1549 if (s[1] == 'x' || s[1] == 'X') {
1550 s0 = ++s;
1551 adj = 0;
1552 aadj = 1.0;
1553 nd0 = -4;
1554
1555 if (!*++s || !(s1 = strchr(hexdigit, *s))) goto ret0;
1556 if (*s == '0') {
1557 while (*++s == '0');
1558 if (!*s) goto ret;
1559 s1 = strchr(hexdigit, *s);
1560 }
1561 if (s1 != NULL) {
1562 do {
1563 adj += aadj * ((s1 - hexdigit) & 15);
1564 nd0 += 4;
1565 aadj /= 16;
1566 } while (*++s && (s1 = strchr(hexdigit, *s)));
1567 }
1568
1569 if (*s == '.') {
1570 dsign = 1;
1571 if (!*++s || !(s1 = strchr(hexdigit, *s))) goto ret0;
1572 if (nd0 < 0) {
1573 while (*s == '0') {
1574 s++;
1575 nd0 -= 4;
1576 }
1577 }
1578 for (; *s && (s1 = strchr(hexdigit, *s)); ++s) {
1579 adj += aadj * ((s1 - hexdigit) & 15);
1580 if ((aadj /= 16) == 0.0) {
1581 while (*++s && strchr(hexdigit, *s));
1582 break;
1583 }
1584 }
1585 }
1586 else {
1587 dsign = 0;
1588 }
1589
1590 if (*s == 'P' || *s == 'p') {
1591 dsign = 0x2C - *++s; /* +: 2B, -: 2D */
1592 if (abs(dsign) == 1) s++;
1593 else dsign = 1;
1594
1595 nd = 0;
1596 c = *s;
1597 if (c < '0' || '9' < c) goto ret0;
1598 do {
1599 nd *= 10;
1600 nd += c;
1601 nd -= '0';
1602 c = *++s;
1603 /* Float("0x0."+("0"*267)+"1fp2095") */
1604 if (nd + dsign * nd0 > 2095) {
1605 while ('0' <= c && c <= '9') c = *++s;
1606 break;
1607 }
1608 } while ('0' <= c && c <= '9');
1609 nd0 += nd * dsign;
1610 }
1611 else {
1612 if (dsign) goto ret0;
1613 }
1614 dval(rv) = ldexp(adj, nd0);
1615 goto ret;
1616 }
1617 nz0 = 1;
1618 while (*++s == '0') ;
1619 if (!*s)
1620 goto ret;
1621 }
1622 s0 = s;
1623 y = z = 0;
1624 for (nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++)
1625 if (nd < 9)
1626 y = 10*y + c - '0';
1627 else if (nd < DBL_DIG + 2)
1628 z = 10*z + c - '0';
1629 nd0 = nd;
1630#ifdef USE_LOCALE
1631 s1 = localeconv()->decimal_point;
1632 if (c == *s1) {
1633 c = '.';
1634 if (*++s1) {
1635 s2 = s;
1636 for (;;) {
1637 if (*++s2 != *s1) {
1638 c = 0;
1639 break;
1640 }
1641 if (!*++s1) {
1642 s = s2;
1643 break;
1644 }
1645 }
1646 }
1647 }
1648#endif
1649 if (c == '.') {
1650 if (!ISDIGIT(s[1]))
1651 goto dig_done;
1652 c = *++s;
1653 if (!nd) {
1654 for (; c == '0'; c = *++s)
1655 nz++;
1656 if (c > '0' && c <= '9') {
1657 s0 = s;
1658 nf += nz;
1659 nz = 0;
1660 goto have_dig;
1661 }
1662 goto dig_done;
1663 }
1664 for (; c >= '0' && c <= '9'; c = *++s) {
1665have_dig:
1666 nz++;
1667 if (nd > DBL_DIG * 4) {
1668 continue;
1669 }
1670 if (c -= '0') {
1671 nf += nz;
1672 for (i = 1; i < nz; i++)
1673 if (nd++ < 9)
1674 y *= 10;
1675 else if (nd <= DBL_DIG + 2)
1676 z *= 10;
1677 if (nd++ < 9)
1678 y = 10*y + c;
1679 else if (nd <= DBL_DIG + 2)
1680 z = 10*z + c;
1681 nz = 0;
1682 }
1683 }
1684 }
1685dig_done:
1686 e = 0;
1687 if (c == 'e' || c == 'E') {
1688 if (!nd && !nz && !nz0) {
1689 goto ret0;
1690 }
1691 s00 = s;
1692 esign = 0;
1693 switch (c = *++s) {
1694 case '-':
1695 esign = 1;
1696 case '+':
1697 c = *++s;
1698 }
1699 if (c >= '0' && c <= '9') {
1700 while (c == '0')
1701 c = *++s;
1702 if (c > '0' && c <= '9') {
1703 L = c - '0';
1704 s1 = s;
1705 while ((c = *++s) >= '0' && c <= '9')
1706 L = 10*L + c - '0';
1707 if (s - s1 > 8 || L > 19999)
1708 /* Avoid confusion from exponents
1709 * so large that e might overflow.
1710 */
1711 e = 19999; /* safe for 16 bit ints */
1712 else
1713 e = (int)L;
1714 if (esign)
1715 e = -e;
1716 }
1717 else
1718 e = 0;
1719 }
1720 else
1721 s = s00;
1722 }
1723 if (!nd) {
1724 if (!nz && !nz0) {
1725#ifdef INFNAN_CHECK
1726 /* Check for Nan and Infinity */
1727 switch (c) {
1728 case 'i':
1729 case 'I':
1730 if (match(&s,"nf")) {
1731 --s;
1732 if (!match(&s,"inity"))
1733 ++s;
1734 word0(rv) = 0x7ff00000;
1735 word1(rv) = 0;
1736 goto ret;
1737 }
1738 break;
1739 case 'n':
1740 case 'N':
1741 if (match(&s, "an")) {
1742 word0(rv) = NAN_WORD0;
1743 word1(rv) = NAN_WORD1;
1744#ifndef No_Hex_NaN
1745 if (*s == '(') /*)*/
1746 hexnan(&rv, &s);
1747#endif
1748 goto ret;
1749 }
1750 }
1751#endif /* INFNAN_CHECK */
1752ret0:
1753 s = s00;
1754 sign = 0;
1755 }
1756 goto ret;
1757 }
1758 e1 = e -= nf;
1759
1760 /* Now we have nd0 digits, starting at s0, followed by a
1761 * decimal point, followed by nd-nd0 digits. The number we're
1762 * after is the integer represented by those digits times
1763 * 10**e */
1764
1765 if (!nd0)
1766 nd0 = nd;
1767 k = nd < DBL_DIG + 2 ? nd : DBL_DIG + 2;
1768 dval(rv) = y;
1769 if (k > 9) {
1770#ifdef SET_INEXACT
1771 if (k > DBL_DIG)
1772 oldinexact = get_inexact();
1773#endif
1774 dval(rv) = tens[k - 9] * dval(rv) + z;
1775 }
1776 bd0 = bb = bd = bs = delta = 0;
1777 if (nd <= DBL_DIG
1778#ifndef RND_PRODQUOT
1779#ifndef Honor_FLT_ROUNDS
1780 && Flt_Rounds == 1
1781#endif
1782#endif
1783 ) {
1784 if (!e)
1785 goto ret;
1786 if (e > 0) {
1787 if (e <= Ten_pmax) {
1788#ifdef VAX
1789 goto vax_ovfl_check;
1790#else
1791#ifdef Honor_FLT_ROUNDS
1792 /* round correctly FLT_ROUNDS = 2 or 3 */
1793 if (sign) {
1794 dval(rv) = -dval(rv);
1795 sign = 0;
1796 }
1797#endif
1798 /* rv = */ rounded_product(dval(rv), tens[e]);
1799 goto ret;
1800#endif
1801 }
1802 i = DBL_DIG - nd;
1803 if (e <= Ten_pmax + i) {
1804 /* A fancier test would sometimes let us do
1805 * this for larger i values.
1806 */
1807#ifdef Honor_FLT_ROUNDS
1808 /* round correctly FLT_ROUNDS = 2 or 3 */
1809 if (sign) {
1810 dval(rv) = -dval(rv);
1811 sign = 0;
1812 }
1813#endif
1814 e -= i;
1815 dval(rv) *= tens[i];
1816#ifdef VAX
1817 /* VAX exponent range is so narrow we must
1818 * worry about overflow here...
1819 */
1820vax_ovfl_check:
1821 word0(rv) -= P*Exp_msk1;
1822 /* rv = */ rounded_product(dval(rv), tens[e]);
1823 if ((word0(rv) & Exp_mask)
1824 > Exp_msk1*(DBL_MAX_EXP+Bias-1-P))
1825 goto ovfl;
1826 word0(rv) += P*Exp_msk1;
1827#else
1828 /* rv = */ rounded_product(dval(rv), tens[e]);
1829#endif
1830 goto ret;
1831 }
1832 }
1833#ifndef Inaccurate_Divide
1834 else if (e >= -Ten_pmax) {
1835#ifdef Honor_FLT_ROUNDS
1836 /* round correctly FLT_ROUNDS = 2 or 3 */
1837 if (sign) {
1838 dval(rv) = -dval(rv);
1839 sign = 0;
1840 }
1841#endif
1842 /* rv = */ rounded_quotient(dval(rv), tens[-e]);
1843 goto ret;
1844 }
1845#endif
1846 }
1847 e1 += nd - k;
1848
1849#ifdef IEEE_Arith
1850#ifdef SET_INEXACT
1851 inexact = 1;
1852 if (k <= DBL_DIG)
1853 oldinexact = get_inexact();
1854#endif
1855#ifdef Avoid_Underflow
1856 scale = 0;
1857#endif
1858#ifdef Honor_FLT_ROUNDS
1859 if ((rounding = Flt_Rounds) >= 2) {
1860 if (sign)
1861 rounding = rounding == 2 ? 0 : 2;
1862 else
1863 if (rounding != 2)
1864 rounding = 0;
1865 }
1866#endif
1867#endif /*IEEE_Arith*/
1868
1869 /* Get starting approximation = rv * 10**e1 */
1870
1871 if (e1 > 0) {
1872 if ((i = e1 & 15) != 0)
1873 dval(rv) *= tens[i];
1874 if (e1 &= ~15) {
1875 if (e1 > DBL_MAX_10_EXP) {
1876ovfl:
1877#ifndef NO_ERRNO
1878 errno = ERANGE;
1879#endif
1880 /* Can't trust HUGE_VAL */
1881#ifdef IEEE_Arith
1882#ifdef Honor_FLT_ROUNDS
1883 switch (rounding) {
1884 case 0: /* toward 0 */
1885 case 3: /* toward -infinity */
1886 word0(rv) = Big0;
1887 word1(rv) = Big1;
1888 break;
1889 default:
1890 word0(rv) = Exp_mask;
1891 word1(rv) = 0;
1892 }
1893#else /*Honor_FLT_ROUNDS*/
1894 word0(rv) = Exp_mask;
1895 word1(rv) = 0;
1896#endif /*Honor_FLT_ROUNDS*/
1897#ifdef SET_INEXACT
1898 /* set overflow bit */
1899 dval(rv0) = 1e300;
1900 dval(rv0) *= dval(rv0);
1901#endif
1902#else /*IEEE_Arith*/
1903 word0(rv) = Big0;
1904 word1(rv) = Big1;
1905#endif /*IEEE_Arith*/
1906 if (bd0)
1907 goto retfree;
1908 goto ret;
1909 }
1910 e1 >>= 4;
1911 for (j = 0; e1 > 1; j++, e1 >>= 1)
1912 if (e1 & 1)
1913 dval(rv) *= bigtens[j];
1914 /* The last multiplication could overflow. */
1915 word0(rv) -= P*Exp_msk1;
1916 dval(rv) *= bigtens[j];
1917 if ((z = word0(rv) & Exp_mask)
1918 > Exp_msk1*(DBL_MAX_EXP+Bias-P))
1919 goto ovfl;
1920 if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
1921 /* set to largest number */
1922 /* (Can't trust DBL_MAX) */
1923 word0(rv) = Big0;
1924 word1(rv) = Big1;
1925 }
1926 else
1927 word0(rv) += P*Exp_msk1;
1928 }
1929 }
1930 else if (e1 < 0) {
1931 e1 = -e1;
1932 if ((i = e1 & 15) != 0)
1933 dval(rv) /= tens[i];
1934 if (e1 >>= 4) {
1935 if (e1 >= 1 << n_bigtens)
1936 goto undfl;
1937#ifdef Avoid_Underflow
1938 if (e1 & Scale_Bit)
1939 scale = 2*P;
1940 for (j = 0; e1 > 0; j++, e1 >>= 1)
1941 if (e1 & 1)
1942 dval(rv) *= tinytens[j];
1943 if (scale && (j = 2*P + 1 - ((word0(rv) & Exp_mask)
1944 >> Exp_shift)) > 0) {
1945 /* scaled rv is denormal; zap j low bits */
1946 if (j >= 32) {
1947 word1(rv) = 0;
1948 if (j >= 53)
1949 word0(rv) = (P+2)*Exp_msk1;
1950 else
1951 word0(rv) &= 0xffffffff << (j-32);
1952 }
1953 else
1954 word1(rv) &= 0xffffffff << j;
1955 }
1956#else
1957 for (j = 0; e1 > 1; j++, e1 >>= 1)
1958 if (e1 & 1)
1959 dval(rv) *= tinytens[j];
1960 /* The last multiplication could underflow. */
1961 dval(rv0) = dval(rv);
1962 dval(rv) *= tinytens[j];
1963 if (!dval(rv)) {
1964 dval(rv) = 2.*dval(rv0);
1965 dval(rv) *= tinytens[j];
1966#endif
1967 if (!dval(rv)) {
1968undfl:
1969 dval(rv) = 0.;
1970#ifndef NO_ERRNO
1971 errno = ERANGE;
1972#endif
1973 if (bd0)
1974 goto retfree;
1975 goto ret;
1976 }
1977#ifndef Avoid_Underflow
1978 word0(rv) = Tiny0;
1979 word1(rv) = Tiny1;
1980 /* The refinement below will clean
1981 * this approximation up.
1982 */
1983 }
1984#endif
1985 }
1986 }
1987
1988 /* Now the hard part -- adjusting rv to the correct value.*/
1989
1990 /* Put digits into bd: true value = bd * 10^e */
1991
1992 bd0 = s2b(s0, nd0, nd, y);
1993
1994 for (;;) {
1995 bd = Balloc(bd0->k);
1996 Bcopy(bd, bd0);
1997 bb = d2b(dval(rv), &bbe, &bbbits); /* rv = bb * 2^bbe */
1998 bs = i2b(1);
1999
2000 if (e >= 0) {
2001 bb2 = bb5 = 0;
2002 bd2 = bd5 = e;
2003 }
2004 else {
2005 bb2 = bb5 = -e;
2006 bd2 = bd5 = 0;
2007 }
2008 if (bbe >= 0)
2009 bb2 += bbe;
2010 else
2011 bd2 -= bbe;
2012 bs2 = bb2;
2013#ifdef Honor_FLT_ROUNDS
2014 if (rounding != 1)
2015 bs2++;
2016#endif
2017#ifdef Avoid_Underflow
2018 j = bbe - scale;
2019 i = j + bbbits - 1; /* logb(rv) */
2020 if (i < Emin) /* denormal */
2021 j += P - Emin;
2022 else
2023 j = P + 1 - bbbits;
2024#else /*Avoid_Underflow*/
2025#ifdef Sudden_Underflow
2026#ifdef IBM
2027 j = 1 + 4*P - 3 - bbbits + ((bbe + bbbits - 1) & 3);
2028#else
2029 j = P + 1 - bbbits;
2030#endif
2031#else /*Sudden_Underflow*/
2032 j = bbe;
2033 i = j + bbbits - 1; /* logb(rv) */
2034 if (i < Emin) /* denormal */
2035 j += P - Emin;
2036 else
2037 j = P + 1 - bbbits;
2038#endif /*Sudden_Underflow*/
2039#endif /*Avoid_Underflow*/
2040 bb2 += j;
2041 bd2 += j;
2042#ifdef Avoid_Underflow
2043 bd2 += scale;
2044#endif
2045 i = bb2 < bd2 ? bb2 : bd2;
2046 if (i > bs2)
2047 i = bs2;
2048 if (i > 0) {
2049 bb2 -= i;
2050 bd2 -= i;
2051 bs2 -= i;
2052 }
2053 if (bb5 > 0) {
2054 bs = pow5mult(bs, bb5);
2055 bb1 = mult(bs, bb);
2056 Bfree(bb);
2057 bb = bb1;
2058 }
2059 if (bb2 > 0)
2060 bb = lshift(bb, bb2);
2061 if (bd5 > 0)
2062 bd = pow5mult(bd, bd5);
2063 if (bd2 > 0)
2064 bd = lshift(bd, bd2);
2065 if (bs2 > 0)
2066 bs = lshift(bs, bs2);
2067 delta = diff(bb, bd);
2068 dsign = delta->sign;
2069 delta->sign = 0;
2070 i = cmp(delta, bs);
2071#ifdef Honor_FLT_ROUNDS
2072 if (rounding != 1) {
2073 if (i < 0) {
2074 /* Error is less than an ulp */
2075 if (!delta->x[0] && delta->wds <= 1) {
2076 /* exact */
2077#ifdef SET_INEXACT
2078 inexact = 0;
2079#endif
2080 break;
2081 }
2082 if (rounding) {
2083 if (dsign) {
2084 adj = 1.;
2085 goto apply_adj;
2086 }
2087 }
2088 else if (!dsign) {
2089 adj = -1.;
2090 if (!word1(rv)
2091 && !(word0(rv) & Frac_mask)) {
2092 y = word0(rv) & Exp_mask;
2093#ifdef Avoid_Underflow
2094 if (!scale || y > 2*P*Exp_msk1)
2095#else
2096 if (y)
2097#endif
2098 {
2099 delta = lshift(delta,Log2P);
2100 if (cmp(delta, bs) <= 0)
2101 adj = -0.5;
2102 }
2103 }
2104apply_adj:
2105#ifdef Avoid_Underflow
2106 if (scale && (y = word0(rv) & Exp_mask)
2107 <= 2*P*Exp_msk1)
2108 word0(adj) += (2*P+1)*Exp_msk1 - y;
2109#else
2110#ifdef Sudden_Underflow
2111 if ((word0(rv) & Exp_mask) <=
2112 P*Exp_msk1) {
2113 word0(rv) += P*Exp_msk1;
2114 dval(rv) += adj*ulp(dval(rv));
2115 word0(rv) -= P*Exp_msk1;
2116 }
2117 else
2118#endif /*Sudden_Underflow*/
2119#endif /*Avoid_Underflow*/
2120 dval(rv) += adj*ulp(dval(rv));
2121 }
2122 break;
2123 }
2124 adj = ratio(delta, bs);
2125 if (adj < 1.)
2126 adj = 1.;
2127 if (adj <= 0x7ffffffe) {
2128 /* adj = rounding ? ceil(adj) : floor(adj); */
2129 y = adj;
2130 if (y != adj) {
2131 if (!((rounding>>1) ^ dsign))
2132 y++;
2133 adj = y;
2134 }
2135 }
2136#ifdef Avoid_Underflow
2137 if (scale && (y = word0(rv) & Exp_mask) <= 2*P*Exp_msk1)
2138 word0(adj) += (2*P+1)*Exp_msk1 - y;
2139#else
2140#ifdef Sudden_Underflow
2141 if ((word0(rv) & Exp_mask) <= P*Exp_msk1) {
2142 word0(rv) += P*Exp_msk1;
2143 adj *= ulp(dval(rv));
2144 if (dsign)
2145 dval(rv) += adj;
2146 else
2147 dval(rv) -= adj;
2148 word0(rv) -= P*Exp_msk1;
2149 goto cont;
2150 }
2151#endif /*Sudden_Underflow*/
2152#endif /*Avoid_Underflow*/
2153 adj *= ulp(dval(rv));
2154 if (dsign)
2155 dval(rv) += adj;
2156 else
2157 dval(rv) -= adj;
2158 goto cont;
2159 }
2160#endif /*Honor_FLT_ROUNDS*/
2161
2162 if (i < 0) {
2163 /* Error is less than half an ulp -- check for
2164 * special case of mantissa a power of two.
2165 */
2166 if (dsign || word1(rv) || word0(rv) & Bndry_mask
2167#ifdef IEEE_Arith
2168#ifdef Avoid_Underflow
2169 || (word0(rv) & Exp_mask) <= (2*P+1)*Exp_msk1
2170#else
2171 || (word0(rv) & Exp_mask) <= Exp_msk1
2172#endif
2173#endif
2174 ) {
2175#ifdef SET_INEXACT
2176 if (!delta->x[0] && delta->wds <= 1)
2177 inexact = 0;
2178#endif
2179 break;
2180 }
2181 if (!delta->x[0] && delta->wds <= 1) {
2182 /* exact result */
2183#ifdef SET_INEXACT
2184 inexact = 0;
2185#endif
2186 break;
2187 }
2188 delta = lshift(delta,Log2P);
2189 if (cmp(delta, bs) > 0)
2190 goto drop_down;
2191 break;
2192 }
2193 if (i == 0) {
2194 /* exactly half-way between */
2195 if (dsign) {
2196 if ((word0(rv) & Bndry_mask1) == Bndry_mask1
2197 && word1(rv) == (
2198#ifdef Avoid_Underflow
2199 (scale && (y = word0(rv) & Exp_mask) <= 2*P*Exp_msk1)
2200 ? (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) :
2201#endif
2202 0xffffffff)) {
2203 /*boundary case -- increment exponent*/
2204 word0(rv) = (word0(rv) & Exp_mask)
2205 + Exp_msk1
2206#ifdef IBM
2207 | Exp_msk1 >> 4
2208#endif
2209 ;
2210 word1(rv) = 0;
2211#ifdef Avoid_Underflow
2212 dsign = 0;
2213#endif
2214 break;
2215 }
2216 }
2217 else if (!(word0(rv) & Bndry_mask) && !word1(rv)) {
2218drop_down:
2219 /* boundary case -- decrement exponent */
2220#ifdef Sudden_Underflow /*{{*/
2221 L = word0(rv) & Exp_mask;
2222#ifdef IBM
2223 if (L < Exp_msk1)
2224#else
2225#ifdef Avoid_Underflow
2226 if (L <= (scale ? (2*P+1)*Exp_msk1 : Exp_msk1))
2227#else
2228 if (L <= Exp_msk1)
2229#endif /*Avoid_Underflow*/
2230#endif /*IBM*/
2231 goto undfl;
2232 L -= Exp_msk1;
2233#else /*Sudden_Underflow}{*/
2234#ifdef Avoid_Underflow
2235 if (scale) {
2236 L = word0(rv) & Exp_mask;
2237 if (L <= (2*P+1)*Exp_msk1) {
2238 if (L > (P+2)*Exp_msk1)
2239 /* round even ==> */
2240 /* accept rv */
2241 break;
2242 /* rv = smallest denormal */
2243 goto undfl;
2244 }
2245 }
2246#endif /*Avoid_Underflow*/
2247 L = (word0(rv) & Exp_mask) - Exp_msk1;
2248#endif /*Sudden_Underflow}}*/
2249 word0(rv) = L | Bndry_mask1;
2250 word1(rv) = 0xffffffff;
2251#ifdef IBM
2252 goto cont;
2253#else
2254 break;
2255#endif
2256 }
2257#ifndef ROUND_BIASED
2258 if (!(word1(rv) & LSB))
2259 break;
2260#endif
2261 if (dsign)
2262 dval(rv) += ulp(dval(rv));
2263#ifndef ROUND_BIASED
2264 else {
2265 dval(rv) -= ulp(dval(rv));
2266#ifndef Sudden_Underflow
2267 if (!dval(rv))
2268 goto undfl;
2269#endif
2270 }
2271#ifdef Avoid_Underflow
2272 dsign = 1 - dsign;
2273#endif
2274#endif
2275 break;
2276 }
2277 if ((aadj = ratio(delta, bs)) <= 2.) {
2278 if (dsign)
2279 aadj = dval(aadj1) = 1.;
2280 else if (word1(rv) || word0(rv) & Bndry_mask) {
2281#ifndef Sudden_Underflow
2282 if (word1(rv) == Tiny1 && !word0(rv))
2283 goto undfl;
2284#endif
2285 aadj = 1.;
2286 dval(aadj1) = -1.;
2287 }
2288 else {
2289 /* special case -- power of FLT_RADIX to be */
2290 /* rounded down... */
2291
2292 if (aadj < 2./FLT_RADIX)
2293 aadj = 1./FLT_RADIX;
2294 else
2295 aadj *= 0.5;
2296 dval(aadj1) = -aadj;
2297 }
2298 }
2299 else {
2300 aadj *= 0.5;
2301 dval(aadj1) = dsign ? aadj : -aadj;
2302#ifdef Check_FLT_ROUNDS
2303 switch (Rounding) {
2304 case 2: /* towards +infinity */
2305 dval(aadj1) -= 0.5;
2306 break;
2307 case 0: /* towards 0 */
2308 case 3: /* towards -infinity */
2309 dval(aadj1) += 0.5;
2310 }
2311#else
2312 if (Flt_Rounds == 0)
2313 dval(aadj1) += 0.5;
2314#endif /*Check_FLT_ROUNDS*/
2315 }
2316 y = word0(rv) & Exp_mask;
2317
2318 /* Check for overflow */
2319
2320 if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
2321 dval(rv0) = dval(rv);
2322 word0(rv) -= P*Exp_msk1;
2323 adj = dval(aadj1) * ulp(dval(rv));
2324 dval(rv) += adj;
2325 if ((word0(rv) & Exp_mask) >=
2326 Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
2327 if (word0(rv0) == Big0 && word1(rv0) == Big1)
2328 goto ovfl;
2329 word0(rv) = Big0;
2330 word1(rv) = Big1;
2331 goto cont;
2332 }
2333 else
2334 word0(rv) += P*Exp_msk1;
2335 }
2336 else {
2337#ifdef Avoid_Underflow
2338 if (scale && y <= 2*P*Exp_msk1) {
2339 if (aadj <= 0x7fffffff) {
2340 if ((z = (int)aadj) <= 0)
2341 z = 1;
2342 aadj = z;
2343 dval(aadj1) = dsign ? aadj : -aadj;
2344 }
2345 word0(aadj1) += (2*P+1)*Exp_msk1 - y;
2346 }
2347 adj = dval(aadj1) * ulp(dval(rv));
2348 dval(rv) += adj;
2349#else
2350#ifdef Sudden_Underflow
2351 if ((word0(rv) & Exp_mask) <= P*Exp_msk1) {
2352 dval(rv0) = dval(rv);
2353 word0(rv) += P*Exp_msk1;
2354 adj = dval(aadj1) * ulp(dval(rv));
2355 dval(rv) += adj;
2356#ifdef IBM
2357 if ((word0(rv) & Exp_mask) < P*Exp_msk1)
2358#else
2359 if ((word0(rv) & Exp_mask) <= P*Exp_msk1)
2360#endif
2361 {
2362 if (word0(rv0) == Tiny0 && word1(rv0) == Tiny1)
2363 goto undfl;
2364 word0(rv) = Tiny0;
2365 word1(rv) = Tiny1;
2366 goto cont;
2367 }
2368 else
2369 word0(rv) -= P*Exp_msk1;
2370 }
2371 else {
2372 adj = dval(aadj1) * ulp(dval(rv));
2373 dval(rv) += adj;
2374 }
2375#else /*Sudden_Underflow*/
2376 /* Compute adj so that the IEEE rounding rules will
2377 * correctly round rv + adj in some half-way cases.
2378 * If rv * ulp(rv) is denormalized (i.e.,
2379 * y <= (P-1)*Exp_msk1), we must adjust aadj to avoid
2380 * trouble from bits lost to denormalization;
2381 * example: 1.2e-307 .
2382 */
2383 if (y <= (P-1)*Exp_msk1 && aadj > 1.) {
2384 dval(aadj1) = (double)(int)(aadj + 0.5);
2385 if (!dsign)
2386 dval(aadj1) = -dval(aadj1);
2387 }
2388 adj = dval(aadj1) * ulp(dval(rv));
2389 dval(rv) += adj;
2390#endif /*Sudden_Underflow*/
2391#endif /*Avoid_Underflow*/
2392 }
2393 z = word0(rv) & Exp_mask;
2394#ifndef SET_INEXACT
2395#ifdef Avoid_Underflow
2396 if (!scale)
2397#endif
2398 if (y == z) {
2399 /* Can we stop now? */
2400 L = (Long)aadj;
2401 aadj -= L;
2402 /* The tolerances below are conservative. */
2403 if (dsign || word1(rv) || word0(rv) & Bndry_mask) {
2404 if (aadj < .4999999 || aadj > .5000001)
2405 break;
2406 }
2407 else if (aadj < .4999999/FLT_RADIX)
2408 break;
2409 }
2410#endif
2411cont:
2412 Bfree(bb);
2413 Bfree(bd);
2414 Bfree(bs);
2415 Bfree(delta);
2416 }
2417#ifdef SET_INEXACT
2418 if (inexact) {
2419 if (!oldinexact) {
2420 word0(rv0) = Exp_1 + (70 << Exp_shift);
2421 word1(rv0) = 0;
2422 dval(rv0) += 1.;
2423 }
2424 }
2425 else if (!oldinexact)
2426 clear_inexact();
2427#endif
2428#ifdef Avoid_Underflow
2429 if (scale) {
2430 word0(rv0) = Exp_1 - 2*P*Exp_msk1;
2431 word1(rv0) = 0;
2432 dval(rv) *= dval(rv0);
2433#ifndef NO_ERRNO
2434 /* try to avoid the bug of testing an 8087 register value */
2435 if (word0(rv) == 0 && word1(rv) == 0)
2436 errno = ERANGE;
2437#endif
2438 }
2439#endif /* Avoid_Underflow */
2440#ifdef SET_INEXACT
2441 if (inexact && !(word0(rv) & Exp_mask)) {
2442 /* set underflow bit */
2443 dval(rv0) = 1e-300;
2444 dval(rv0) *= dval(rv0);
2445 }
2446#endif
2447retfree:
2448 Bfree(bb);
2449 Bfree(bd);
2450 Bfree(bs);
2451 Bfree(bd0);
2452 Bfree(delta);
2453ret:
2454 if (se)
2455 *se = (char *)s;
2456 return sign ? -dval(rv) : dval(rv);
2457}
2458
2459NO_SANITIZE("unsigned-integer-overflow", static int quorem(Bigint *b, Bigint *S));
2460static int
2461quorem(Bigint *b, Bigint *S)
2462{
2463 int n;
2464 ULong *bx, *bxe, q, *sx, *sxe;
2465#ifdef ULLong
2466 ULLong borrow, carry, y, ys;
2467#else
2468 ULong borrow, carry, y, ys;
2469#ifdef Pack_32
2470 ULong si, z, zs;
2471#endif
2472#endif
2473
2474 n = S->wds;
2475#ifdef DEBUG
2476 /*debug*/ if (b->wds > n)
2477 /*debug*/ Bug("oversize b in quorem");
2478#endif
2479 if (b->wds < n)
2480 return 0;
2481 sx = S->x;
2482 sxe = sx + --n;
2483 bx = b->x;
2484 bxe = bx + n;
2485 q = *bxe / (*sxe + 1); /* ensure q <= true quotient */
2486#ifdef DEBUG
2487 /*debug*/ if (q > 9)
2488 /*debug*/ Bug("oversized quotient in quorem");
2489#endif
2490 if (q) {
2491 borrow = 0;
2492 carry = 0;
2493 do {
2494#ifdef ULLong
2495 ys = *sx++ * (ULLong)q + carry;
2496 carry = ys >> 32;
2497 y = *bx - (ys & FFFFFFFF) - borrow;
2498 borrow = y >> 32 & (ULong)1;
2499 *bx++ = (ULong)(y & FFFFFFFF);
2500#else
2501#ifdef Pack_32
2502 si = *sx++;
2503 ys = (si & 0xffff) * q + carry;
2504 zs = (si >> 16) * q + (ys >> 16);
2505 carry = zs >> 16;
2506 y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
2507 borrow = (y & 0x10000) >> 16;
2508 z = (*bx >> 16) - (zs & 0xffff) - borrow;
2509 borrow = (z & 0x10000) >> 16;
2510 Storeinc(bx, z, y);
2511#else
2512 ys = *sx++ * q + carry;
2513 carry = ys >> 16;
2514 y = *bx - (ys & 0xffff) - borrow;
2515 borrow = (y & 0x10000) >> 16;
2516 *bx++ = y & 0xffff;
2517#endif
2518#endif
2519 } while (sx <= sxe);
2520 if (!*bxe) {
2521 bx = b->x;
2522 while (--bxe > bx && !*bxe)
2523 --n;
2524 b->wds = n;
2525 }
2526 }
2527 if (cmp(b, S) >= 0) {
2528 q++;
2529 borrow = 0;
2530 carry = 0;
2531 bx = b->x;
2532 sx = S->x;
2533 do {
2534#ifdef ULLong
2535 ys = *sx++ + carry;
2536 carry = ys >> 32;
2537 y = *bx - (ys & FFFFFFFF) - borrow;
2538 borrow = y >> 32 & (ULong)1;
2539 *bx++ = (ULong)(y & FFFFFFFF);
2540#else
2541#ifdef Pack_32
2542 si = *sx++;
2543 ys = (si & 0xffff) + carry;
2544 zs = (si >> 16) + (ys >> 16);
2545 carry = zs >> 16;
2546 y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
2547 borrow = (y & 0x10000) >> 16;
2548 z = (*bx >> 16) - (zs & 0xffff) - borrow;
2549 borrow = (z & 0x10000) >> 16;
2550 Storeinc(bx, z, y);
2551#else
2552 ys = *sx++ + carry;
2553 carry = ys >> 16;
2554 y = *bx - (ys & 0xffff) - borrow;
2555 borrow = (y & 0x10000) >> 16;
2556 *bx++ = y & 0xffff;
2557#endif
2558#endif
2559 } while (sx <= sxe);
2560 bx = b->x;
2561 bxe = bx + n;
2562 if (!*bxe) {
2563 while (--bxe > bx && !*bxe)
2564 --n;
2565 b->wds = n;
2566 }
2567 }
2568 return q;
2569}
2570
2571#ifndef MULTIPLE_THREADS
2572static char *dtoa_result;
2573#endif
2574
2575#ifndef MULTIPLE_THREADS
2576static char *
2577rv_alloc(int i)
2578{
2579 return dtoa_result = MALLOC(i);
2580}
2581#else
2582#define rv_alloc(i) MALLOC(i)
2583#endif
2584
2585static char *
2586nrv_alloc(const char *s, char **rve, size_t n)
2587{
2588 char *rv, *t;
2589
2590 t = rv = rv_alloc(n);
2591 while ((*t = *s++) != 0) t++;
2592 if (rve)
2593 *rve = t;
2594 return rv;
2595}
2596
2597#define rv_strdup(s, rve) nrv_alloc((s), (rve), strlen(s)+1)
2598
2599#ifndef MULTIPLE_THREADS
2600/* freedtoa(s) must be used to free values s returned by dtoa
2601 * when MULTIPLE_THREADS is #defined. It should be used in all cases,
2602 * but for consistency with earlier versions of dtoa, it is optional
2603 * when MULTIPLE_THREADS is not defined.
2604 */
2605
2606static void
2607freedtoa(char *s)
2608{
2609 FREE(s);
2610}
2611#endif
2612
2613static const char INFSTR[] = "Infinity";
2614static const char NANSTR[] = "NaN";
2615static const char ZEROSTR[] = "0";
2616
2617/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
2618 *
2619 * Inspired by "How to Print Floating-Point Numbers Accurately" by
2620 * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
2621 *
2622 * Modifications:
2623 * 1. Rather than iterating, we use a simple numeric overestimate
2624 * to determine k = floor(log10(d)). We scale relevant
2625 * quantities using O(log2(k)) rather than O(k) multiplications.
2626 * 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
2627 * try to generate digits strictly left to right. Instead, we
2628 * compute with fewer bits and propagate the carry if necessary
2629 * when rounding the final digit up. This is often faster.
2630 * 3. Under the assumption that input will be rounded nearest,
2631 * mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
2632 * That is, we allow equality in stopping tests when the
2633 * round-nearest rule will give the same floating-point value
2634 * as would satisfaction of the stopping test with strict
2635 * inequality.
2636 * 4. We remove common factors of powers of 2 from relevant
2637 * quantities.
2638 * 5. When converting floating-point integers less than 1e16,
2639 * we use floating-point arithmetic rather than resorting
2640 * to multiple-precision integers.
2641 * 6. When asked to produce fewer than 15 digits, we first try
2642 * to get by with floating-point arithmetic; we resort to
2643 * multiple-precision integer arithmetic only if we cannot
2644 * guarantee that the floating-point calculation has given
2645 * the correctly rounded result. For k requested digits and
2646 * "uniformly" distributed input, the probability is
2647 * something like 10^(k-15) that we must resort to the Long
2648 * calculation.
2649 */
2650
2651char *
2652dtoa(double d_, int mode, int ndigits, int *decpt, int *sign, char **rve)
2653{
2654 /* Arguments ndigits, decpt, sign are similar to those
2655 of ecvt and fcvt; trailing zeros are suppressed from
2656 the returned string. If not null, *rve is set to point
2657 to the end of the return value. If d is +-Infinity or NaN,
2658 then *decpt is set to 9999.
2659
2660 mode:
2661 0 ==> shortest string that yields d when read in
2662 and rounded to nearest.
2663 1 ==> like 0, but with Steele & White stopping rule;
2664 e.g. with IEEE P754 arithmetic , mode 0 gives
2665 1e23 whereas mode 1 gives 9.999999999999999e22.
2666 2 ==> max(1,ndigits) significant digits. This gives a
2667 return value similar to that of ecvt, except
2668 that trailing zeros are suppressed.
2669 3 ==> through ndigits past the decimal point. This
2670 gives a return value similar to that from fcvt,
2671 except that trailing zeros are suppressed, and
2672 ndigits can be negative.
2673 4,5 ==> similar to 2 and 3, respectively, but (in
2674 round-nearest mode) with the tests of mode 0 to
2675 possibly return a shorter string that rounds to d.
2676 With IEEE arithmetic and compilation with
2677 -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same
2678 as modes 2 and 3 when FLT_ROUNDS != 1.
2679 6-9 ==> Debugging modes similar to mode - 4: don't try
2680 fast floating-point estimate (if applicable).
2681
2682 Values of mode other than 0-9 are treated as mode 0.
2683
2684 Sufficient space is allocated to the return value
2685 to hold the suppressed trailing zeros.
2686 */
2687
2688 int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1,
2689 j, j1, k, k0, k_check, leftright, m2, m5, s2, s5,
2690 spec_case, try_quick, half = 0;
2691 Long L;
2692#ifndef Sudden_Underflow
2693 int denorm;
2694 ULong x;
2695#endif
2696 Bigint *b, *b1, *delta, *mlo = 0, *mhi = 0, *S;
2697 double ds;
2698 double_u d, d2, eps;
2699 char *s, *s0;
2700#ifdef Honor_FLT_ROUNDS
2701 int rounding;
2702#endif
2703#ifdef SET_INEXACT
2704 int inexact, oldinexact;
2705#endif
2706
2707 dval(d) = d_;
2708
2709#ifndef MULTIPLE_THREADS
2710 if (dtoa_result) {
2711 freedtoa(dtoa_result);
2712 dtoa_result = 0;
2713 }
2714#endif
2715
2716 if (word0(d) & Sign_bit) {
2717 /* set sign for everything, including 0's and NaNs */
2718 *sign = 1;
2719 word0(d) &= ~Sign_bit; /* clear sign bit */
2720 }
2721 else
2722 *sign = 0;
2723
2724#if defined(IEEE_Arith) + defined(VAX)
2725#ifdef IEEE_Arith
2726 if ((word0(d) & Exp_mask) == Exp_mask)
2727#else
2728 if (word0(d) == 0x8000)
2729#endif
2730 {
2731 /* Infinity or NaN */
2732 *decpt = 9999;
2733#ifdef IEEE_Arith
2734 if (!word1(d) && !(word0(d) & 0xfffff))
2735 return rv_strdup(INFSTR, rve);
2736#endif
2737 return rv_strdup(NANSTR, rve);
2738 }
2739#endif
2740#ifdef IBM
2741 dval(d) += 0; /* normalize */
2742#endif
2743 if (!dval(d)) {
2744 *decpt = 1;
2745 return rv_strdup(ZEROSTR, rve);
2746 }
2747
2748#ifdef SET_INEXACT
2749 try_quick = oldinexact = get_inexact();
2750 inexact = 1;
2751#endif
2752#ifdef Honor_FLT_ROUNDS
2753 if ((rounding = Flt_Rounds) >= 2) {
2754 if (*sign)
2755 rounding = rounding == 2 ? 0 : 2;
2756 else
2757 if (rounding != 2)
2758 rounding = 0;
2759 }
2760#endif
2761
2762 b = d2b(dval(d), &be, &bbits);
2763#ifdef Sudden_Underflow
2764 i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1));
2765#else
2766 if ((i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1))) != 0) {
2767#endif
2768 dval(d2) = dval(d);
2769 word0(d2) &= Frac_mask1;
2770 word0(d2) |= Exp_11;
2771#ifdef IBM
2772 if (j = 11 - hi0bits(word0(d2) & Frac_mask))
2773 dval(d2) /= 1 << j;
2774#endif
2775
2776 /* log(x) ~=~ log(1.5) + (x-1.5)/1.5
2777 * log10(x) = log(x) / log(10)
2778 * ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
2779 * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
2780 *
2781 * This suggests computing an approximation k to log10(d) by
2782 *
2783 * k = (i - Bias)*0.301029995663981
2784 * + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
2785 *
2786 * We want k to be too large rather than too small.
2787 * The error in the first-order Taylor series approximation
2788 * is in our favor, so we just round up the constant enough
2789 * to compensate for any error in the multiplication of
2790 * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
2791 * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
2792 * adding 1e-13 to the constant term more than suffices.
2793 * Hence we adjust the constant term to 0.1760912590558.
2794 * (We could get a more accurate k by invoking log10,
2795 * but this is probably not worthwhile.)
2796 */
2797
2798 i -= Bias;
2799#ifdef IBM
2800 i <<= 2;
2801 i += j;
2802#endif
2803#ifndef Sudden_Underflow
2804 denorm = 0;
2805 }
2806 else {
2807 /* d is denormalized */
2808
2809 i = bbits + be + (Bias + (P-1) - 1);
2810 x = i > 32 ? word0(d) << (64 - i) | word1(d) >> (i - 32)
2811 : word1(d) << (32 - i);
2812 dval(d2) = x;
2813 word0(d2) -= 31*Exp_msk1; /* adjust exponent */
2814 i -= (Bias + (P-1) - 1) + 1;
2815 denorm = 1;
2816 }
2817#endif
2818 ds = (dval(d2)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;
2819 k = (int)ds;
2820 if (ds < 0. && ds != k)
2821 k--; /* want k = floor(ds) */
2822 k_check = 1;
2823 if (k >= 0 && k <= Ten_pmax) {
2824 if (dval(d) < tens[k])
2825 k--;
2826 k_check = 0;
2827 }
2828 j = bbits - i - 1;
2829 if (j >= 0) {
2830 b2 = 0;
2831 s2 = j;
2832 }
2833 else {
2834 b2 = -j;
2835 s2 = 0;
2836 }
2837 if (k >= 0) {
2838 b5 = 0;
2839 s5 = k;
2840 s2 += k;
2841 }
2842 else {
2843 b2 -= k;
2844 b5 = -k;
2845 s5 = 0;
2846 }
2847 if (mode < 0 || mode > 9)
2848 mode = 0;
2849
2850#ifndef SET_INEXACT
2851#ifdef Check_FLT_ROUNDS
2852 try_quick = Rounding == 1;
2853#else
2854 try_quick = 1;
2855#endif
2856#endif /*SET_INEXACT*/
2857
2858 if (mode > 5) {
2859 mode -= 4;
2860 try_quick = 0;
2861 }
2862 leftright = 1;
2863 ilim = ilim1 = -1;
2864 switch (mode) {
2865 case 0:
2866 case 1:
2867 i = 18;
2868 ndigits = 0;
2869 break;
2870 case 2:
2871 leftright = 0;
2872 /* no break */
2873 case 4:
2874 if (ndigits <= 0)
2875 ndigits = 1;
2876 ilim = ilim1 = i = ndigits;
2877 break;
2878 case 3:
2879 leftright = 0;
2880 /* no break */
2881 case 5:
2882 i = ndigits + k + 1;
2883 ilim = i;
2884 ilim1 = i - 1;
2885 if (i <= 0)
2886 i = 1;
2887 }
2888 s = s0 = rv_alloc(i+1);
2889
2890#ifdef Honor_FLT_ROUNDS
2891 if (mode > 1 && rounding != 1)
2892 leftright = 0;
2893#endif
2894
2895 if (ilim >= 0 && ilim <= Quick_max && try_quick) {
2896
2897 /* Try to get by with floating-point arithmetic. */
2898
2899 i = 0;
2900 dval(d2) = dval(d);
2901 k0 = k;
2902 ilim0 = ilim;
2903 ieps = 2; /* conservative */
2904 if (k > 0) {
2905 ds = tens[k&0xf];
2906 j = k >> 4;
2907 if (j & Bletch) {
2908 /* prevent overflows */
2909 j &= Bletch - 1;
2910 dval(d) /= bigtens[n_bigtens-1];
2911 ieps++;
2912 }
2913 for (; j; j >>= 1, i++)
2914 if (j & 1) {
2915 ieps++;
2916 ds *= bigtens[i];
2917 }
2918 dval(d) /= ds;
2919 }
2920 else if ((j1 = -k) != 0) {
2921 dval(d) *= tens[j1 & 0xf];
2922 for (j = j1 >> 4; j; j >>= 1, i++)
2923 if (j & 1) {
2924 ieps++;
2925 dval(d) *= bigtens[i];
2926 }
2927 }
2928 if (k_check && dval(d) < 1. && ilim > 0) {
2929 if (ilim1 <= 0)
2930 goto fast_failed;
2931 ilim = ilim1;
2932 k--;
2933 dval(d) *= 10.;
2934 ieps++;
2935 }
2936 dval(eps) = ieps*dval(d) + 7.;
2937 word0(eps) -= (P-1)*Exp_msk1;
2938 if (ilim == 0) {
2939 S = mhi = 0;
2940 dval(d) -= 5.;
2941 if (dval(d) > dval(eps))
2942 goto one_digit;
2943 if (dval(d) < -dval(eps))
2944 goto no_digits;
2945 goto fast_failed;
2946 }
2947#ifndef No_leftright
2948 if (leftright) {
2949 /* Use Steele & White method of only
2950 * generating digits needed.
2951 */
2952 dval(eps) = 0.5/tens[ilim-1] - dval(eps);
2953 for (i = 0;;) {
2954 L = (int)dval(d);
2955 dval(d) -= L;
2956 *s++ = '0' + (int)L;
2957 if (dval(d) < dval(eps))
2958 goto ret1;
2959 if (1. - dval(d) < dval(eps))
2960 goto bump_up;
2961 if (++i >= ilim)
2962 break;
2963 dval(eps) *= 10.;
2964 dval(d) *= 10.;
2965 }
2966 }
2967 else {
2968#endif
2969 /* Generate ilim digits, then fix them up. */
2970 dval(eps) *= tens[ilim-1];
2971 for (i = 1;; i++, dval(d) *= 10.) {
2972 L = (Long)(dval(d));
2973 if (!(dval(d) -= L))
2974 ilim = i;
2975 *s++ = '0' + (int)L;
2976 if (i == ilim) {
2977 if (dval(d) > 0.5 + dval(eps))
2978 goto bump_up;
2979 else if (dval(d) < 0.5 - dval(eps)) {
2980 while (*--s == '0') ;
2981 s++;
2982 goto ret1;
2983 }
2984 half = 1;
2985 if ((*(s-1) - '0') & 1) {
2986 goto bump_up;
2987 }
2988 break;
2989 }
2990 }
2991#ifndef No_leftright
2992 }
2993#endif
2994fast_failed:
2995 s = s0;
2996 dval(d) = dval(d2);
2997 k = k0;
2998 ilim = ilim0;
2999 }
3000
3001 /* Do we have a "small" integer? */
3002
3003 if (be >= 0 && k <= Int_max) {
3004 /* Yes. */
3005 ds = tens[k];
3006 if (ndigits < 0 && ilim <= 0) {
3007 S = mhi = 0;
3008 if (ilim < 0 || dval(d) <= 5*ds)
3009 goto no_digits;
3010 goto one_digit;
3011 }
3012 for (i = 1;; i++, dval(d) *= 10.) {
3013 L = (Long)(dval(d) / ds);
3014 dval(d) -= L*ds;
3015#ifdef Check_FLT_ROUNDS
3016 /* If FLT_ROUNDS == 2, L will usually be high by 1 */
3017 if (dval(d) < 0) {
3018 L--;
3019 dval(d) += ds;
3020 }
3021#endif
3022 *s++ = '0' + (int)L;
3023 if (!dval(d)) {
3024#ifdef SET_INEXACT
3025 inexact = 0;
3026#endif
3027 break;
3028 }
3029 if (i == ilim) {
3030#ifdef Honor_FLT_ROUNDS
3031 if (mode > 1)
3032 switch (rounding) {
3033 case 0: goto ret1;
3034 case 2: goto bump_up;
3035 }
3036#endif
3037 dval(d) += dval(d);
3038 if (dval(d) > ds || (dval(d) == ds && (L & 1))) {
3039bump_up:
3040 while (*--s == '9')
3041 if (s == s0) {
3042 k++;
3043 *s = '0';
3044 break;
3045 }
3046 ++*s++;
3047 }
3048 break;
3049 }
3050 }
3051 goto ret1;
3052 }
3053
3054 m2 = b2;
3055 m5 = b5;
3056 if (leftright) {
3057 i =
3058#ifndef Sudden_Underflow
3059 denorm ? be + (Bias + (P-1) - 1 + 1) :
3060#endif
3061#ifdef IBM
3062 1 + 4*P - 3 - bbits + ((bbits + be - 1) & 3);
3063#else
3064 1 + P - bbits;
3065#endif
3066 b2 += i;
3067 s2 += i;
3068 mhi = i2b(1);
3069 }
3070 if (m2 > 0 && s2 > 0) {
3071 i = m2 < s2 ? m2 : s2;
3072 b2 -= i;
3073 m2 -= i;
3074 s2 -= i;
3075 }
3076 if (b5 > 0) {
3077 if (leftright) {
3078 if (m5 > 0) {
3079 mhi = pow5mult(mhi, m5);
3080 b1 = mult(mhi, b);
3081 Bfree(b);
3082 b = b1;
3083 }
3084 if ((j = b5 - m5) != 0)
3085 b = pow5mult(b, j);
3086 }
3087 else
3088 b = pow5mult(b, b5);
3089 }
3090 S = i2b(1);
3091 if (s5 > 0)
3092 S = pow5mult(S, s5);
3093
3094 /* Check for special case that d is a normalized power of 2. */
3095
3096 spec_case = 0;
3097 if ((mode < 2 || leftright)
3098#ifdef Honor_FLT_ROUNDS
3099 && rounding == 1
3100#endif
3101 ) {
3102 if (!word1(d) && !(word0(d) & Bndry_mask)
3103#ifndef Sudden_Underflow
3104 && word0(d) & (Exp_mask & ~Exp_msk1)
3105#endif
3106 ) {
3107 /* The special case */
3108 b2 += Log2P;
3109 s2 += Log2P;
3110 spec_case = 1;
3111 }
3112 }
3113
3114 /* Arrange for convenient computation of quotients:
3115 * shift left if necessary so divisor has 4 leading 0 bits.
3116 *
3117 * Perhaps we should just compute leading 28 bits of S once
3118 * and for all and pass them and a shift to quorem, so it
3119 * can do shifts and ors to compute the numerator for q.
3120 */
3121#ifdef Pack_32
3122 if ((i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f) != 0)
3123 i = 32 - i;
3124#else
3125 if ((i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0xf) != 0)
3126 i = 16 - i;
3127#endif
3128 if (i > 4) {
3129 i -= 4;
3130 b2 += i;
3131 m2 += i;
3132 s2 += i;
3133 }
3134 else if (i < 4) {
3135 i += 28;
3136 b2 += i;
3137 m2 += i;
3138 s2 += i;
3139 }
3140 if (b2 > 0)
3141 b = lshift(b, b2);
3142 if (s2 > 0)
3143 S = lshift(S, s2);
3144 if (k_check) {
3145 if (cmp(b,S) < 0) {
3146 k--;
3147 b = multadd(b, 10, 0); /* we botched the k estimate */
3148 if (leftright)
3149 mhi = multadd(mhi, 10, 0);
3150 ilim = ilim1;
3151 }
3152 }
3153 if (ilim <= 0 && (mode == 3 || mode == 5)) {
3154 if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) {
3155 /* no digits, fcvt style */
3156no_digits:
3157 k = -1 - ndigits;
3158 goto ret;
3159 }
3160one_digit:
3161 *s++ = '1';
3162 k++;
3163 goto ret;
3164 }
3165 if (leftright) {
3166 if (m2 > 0)
3167 mhi = lshift(mhi, m2);
3168
3169 /* Compute mlo -- check for special case
3170 * that d is a normalized power of 2.
3171 */
3172
3173 mlo = mhi;
3174 if (spec_case) {
3175 mhi = Balloc(mhi->k);
3176 Bcopy(mhi, mlo);
3177 mhi = lshift(mhi, Log2P);
3178 }
3179
3180 for (i = 1;;i++) {
3181 dig = quorem(b,S) + '0';
3182 /* Do we yet have the shortest decimal string
3183 * that will round to d?
3184 */
3185 j = cmp(b, mlo);
3186 delta = diff(S, mhi);
3187 j1 = delta->sign ? 1 : cmp(b, delta);
3188 Bfree(delta);
3189#ifndef ROUND_BIASED
3190 if (j1 == 0 && mode != 1 && !(word1(d) & 1)
3191#ifdef Honor_FLT_ROUNDS
3192 && rounding >= 1
3193#endif
3194 ) {
3195 if (dig == '9')
3196 goto round_9_up;
3197 if (j > 0)
3198 dig++;
3199#ifdef SET_INEXACT
3200 else if (!b->x[0] && b->wds <= 1)
3201 inexact = 0;
3202#endif
3203 *s++ = dig;
3204 goto ret;
3205 }
3206#endif
3207 if (j < 0 || (j == 0 && mode != 1
3208#ifndef ROUND_BIASED
3209 && !(word1(d) & 1)
3210#endif
3211 )) {
3212 if (!b->x[0] && b->wds <= 1) {
3213#ifdef SET_INEXACT
3214 inexact = 0;
3215#endif
3216 goto accept_dig;
3217 }
3218#ifdef Honor_FLT_ROUNDS
3219 if (mode > 1)
3220 switch (rounding) {
3221 case 0: goto accept_dig;
3222 case 2: goto keep_dig;
3223 }
3224#endif /*Honor_FLT_ROUNDS*/
3225 if (j1 > 0) {
3226 b = lshift(b, 1);
3227 j1 = cmp(b, S);
3228 if ((j1 > 0 || (j1 == 0 && (dig & 1))) && dig++ == '9')
3229 goto round_9_up;
3230 }
3231accept_dig:
3232 *s++ = dig;
3233 goto ret;
3234 }
3235 if (j1 > 0) {
3236#ifdef Honor_FLT_ROUNDS
3237 if (!rounding)
3238 goto accept_dig;
3239#endif
3240 if (dig == '9') { /* possible if i == 1 */
3241round_9_up:
3242 *s++ = '9';
3243 goto roundoff;
3244 }
3245 *s++ = dig + 1;
3246 goto ret;
3247 }
3248#ifdef Honor_FLT_ROUNDS
3249keep_dig:
3250#endif
3251 *s++ = dig;
3252 if (i == ilim)
3253 break;
3254 b = multadd(b, 10, 0);
3255 if (mlo == mhi)
3256 mlo = mhi = multadd(mhi, 10, 0);
3257 else {
3258 mlo = multadd(mlo, 10, 0);
3259 mhi = multadd(mhi, 10, 0);
3260 }
3261 }
3262 }
3263 else
3264 for (i = 1;; i++) {
3265 *s++ = dig = quorem(b,S) + '0';
3266 if (!b->x[0] && b->wds <= 1) {
3267#ifdef SET_INEXACT
3268 inexact = 0;
3269#endif
3270 goto ret;
3271 }
3272 if (i >= ilim)
3273 break;
3274 b = multadd(b, 10, 0);
3275 }
3276
3277 /* Round off last digit */
3278
3279#ifdef Honor_FLT_ROUNDS
3280 switch (rounding) {
3281 case 0: goto trimzeros;
3282 case 2: goto roundoff;
3283 }
3284#endif
3285 b = lshift(b, 1);
3286 j = cmp(b, S);
3287 if (j > 0 || (j == 0 && (dig & 1))) {
3288 roundoff:
3289 while (*--s == '9')
3290 if (s == s0) {
3291 k++;
3292 *s++ = '1';
3293 goto ret;
3294 }
3295 if (!half || (*s - '0') & 1)
3296 ++*s;
3297 }
3298 else {
3299 while (*--s == '0') ;
3300 }
3301 s++;
3302ret:
3303 Bfree(S);
3304 if (mhi) {
3305 if (mlo && mlo != mhi)
3306 Bfree(mlo);
3307 Bfree(mhi);
3308 }
3309ret1:
3310#ifdef SET_INEXACT
3311 if (inexact) {
3312 if (!oldinexact) {
3313 word0(d) = Exp_1 + (70 << Exp_shift);
3314 word1(d) = 0;
3315 dval(d) += 1.;
3316 }
3317 }
3318 else if (!oldinexact)
3319 clear_inexact();
3320#endif
3321 Bfree(b);
3322 *s = 0;
3323 *decpt = k + 1;
3324 if (rve)
3325 *rve = s;
3326 return s0;
3327}
3328
3329/*-
3330 * Copyright (c) 2004-2008 David Schultz <das@FreeBSD.ORG>
3331 * All rights reserved.
3332 *
3333 * Redistribution and use in source and binary forms, with or without
3334 * modification, are permitted provided that the following conditions
3335 * are met:
3336 * 1. Redistributions of source code must retain the above copyright
3337 * notice, this list of conditions and the following disclaimer.
3338 * 2. Redistributions in binary form must reproduce the above copyright
3339 * notice, this list of conditions and the following disclaimer in the
3340 * documentation and/or other materials provided with the distribution.
3341 *
3342 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
3343 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
3344 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
3345 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
3346 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
3347 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
3348 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
3349 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
3350 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
3351 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
3352 * SUCH DAMAGE.
3353 */
3354
3355#define DBL_MANH_SIZE 20
3356#define DBL_MANL_SIZE 32
3357#define DBL_ADJ (DBL_MAX_EXP - 2)
3358#define SIGFIGS ((DBL_MANT_DIG + 3) / 4 + 1)
3359#define dexp_get(u) ((int)(word0(u) >> Exp_shift) & ~Exp_msk1)
3360#define dexp_set(u,v) (word0(u) = (((int)(word0(u)) & ~Exp_mask) | ((v) << Exp_shift)))
3361#define dmanh_get(u) ((uint32_t)(word0(u) & Frac_mask))
3362#define dmanl_get(u) ((uint32_t)word1(u))
3363
3364
3365/*
3366 * This procedure converts a double-precision number in IEEE format
3367 * into a string of hexadecimal digits and an exponent of 2. Its
3368 * behavior is bug-for-bug compatible with dtoa() in mode 2, with the
3369 * following exceptions:
3370 *
3371 * - An ndigits < 0 causes it to use as many digits as necessary to
3372 * represent the number exactly.
3373 * - The additional xdigs argument should point to either the string
3374 * "0123456789ABCDEF" or the string "0123456789abcdef", depending on
3375 * which case is desired.
3376 * - This routine does not repeat dtoa's mistake of setting decpt
3377 * to 9999 in the case of an infinity or NaN. INT_MAX is used
3378 * for this purpose instead.
3379 *
3380 * Note that the C99 standard does not specify what the leading digit
3381 * should be for non-zero numbers. For instance, 0x1.3p3 is the same
3382 * as 0x2.6p2 is the same as 0x4.cp3. This implementation always makes
3383 * the leading digit a 1. This ensures that the exponent printed is the
3384 * actual base-2 exponent, i.e., ilogb(d).
3385 *
3386 * Inputs: d, xdigs, ndigits
3387 * Outputs: decpt, sign, rve
3388 */
3389char *
3390hdtoa(double d, const char *xdigs, int ndigits, int *decpt, int *sign, char **rve)
3391{
3392 U u;
3393 char *s, *s0;
3394 int bufsize;
3395 uint32_t manh, manl;
3396
3397 u.d = d;
3398 if (word0(u) & Sign_bit) {
3399 /* set sign for everything, including 0's and NaNs */
3400 *sign = 1;
3401 word0(u) &= ~Sign_bit; /* clear sign bit */
3402 }
3403 else
3404 *sign = 0;
3405
3406 if (isinf(d)) { /* FP_INFINITE */
3407 *decpt = INT_MAX;
3408 return rv_strdup(INFSTR, rve);
3409 }
3410 else if (isnan(d)) { /* FP_NAN */
3411 *decpt = INT_MAX;
3412 return rv_strdup(NANSTR, rve);
3413 }
3414 else if (d == 0.0) { /* FP_ZERO */
3415 *decpt = 1;
3416 return rv_strdup(ZEROSTR, rve);
3417 }
3418 else if (dexp_get(u)) { /* FP_NORMAL */
3419 *decpt = dexp_get(u) - DBL_ADJ;
3420 }
3421 else { /* FP_SUBNORMAL */
3422 u.d *= 5.363123171977039e+154 /* 0x1p514 */;
3423 *decpt = dexp_get(u) - (514 + DBL_ADJ);
3424 }
3425
3426 if (ndigits == 0) /* dtoa() compatibility */
3427 ndigits = 1;
3428
3429 /*
3430 * If ndigits < 0, we are expected to auto-size, so we allocate
3431 * enough space for all the digits.
3432 */
3433 bufsize = (ndigits > 0) ? ndigits : SIGFIGS;
3434 s0 = rv_alloc(bufsize+1);
3435
3436 /* Round to the desired number of digits. */
3437 if (SIGFIGS > ndigits && ndigits > 0) {
3438 float redux = 1.0f;
3439 int offset = 4 * ndigits + DBL_MAX_EXP - 4 - DBL_MANT_DIG;
3440 dexp_set(u, offset);
3441 u.d += redux;
3442 u.d -= redux;
3443 *decpt += dexp_get(u) - offset;
3444 }
3445
3446 manh = dmanh_get(u);
3447 manl = dmanl_get(u);
3448 *s0 = '1';
3449 for (s = s0 + 1; s < s0 + bufsize; s++) {
3450 *s = xdigs[(manh >> (DBL_MANH_SIZE - 4)) & 0xf];
3451 manh = (manh << 4) | (manl >> (DBL_MANL_SIZE - 4));
3452 manl <<= 4;
3453 }
3454
3455 /* If ndigits < 0, we are expected to auto-size the precision. */
3456 if (ndigits < 0) {
3457 for (ndigits = SIGFIGS; s0[ndigits - 1] == '0'; ndigits--)
3458 ;
3459 }
3460
3461 s = s0 + ndigits;
3462 *s = '\0';
3463 if (rve != NULL)
3464 *rve = s;
3465 return (s0);
3466}
3467
3468#ifdef __cplusplus
3469#if 0
3470{ /* satisfy cc-mode */
3471#endif
3472}
3473#endif
#define ISDIGIT
Old name of rb_isdigit.
Definition ctype.h:93
#define ASSUME
Old name of RBIMPL_ASSUME.
Definition assume.h:27
int len
Length of the buffer.
Definition io.h:8
#define strtod(s, e)
Just another name of ruby_strtod.
Definition util.h:223
#define errno
Ractor-aware version of errno.
Definition ruby.h:388
Definition dtoa.c:522
Definition dtoa.c:305