
Abstract Interpretation vs “Just Flow Stuff”

Rigorous 
algorithm 
studied in 
academia

One 
flowey 
boi

Alon Zakai / March 2025

B

A

D

E

C

WHO WOULD WIN?



The Optimization Problem (simplified)
(module
  (type $struct (struct (field mut i32)))

  (global i32 $global (i32.const 42))

  (func “work” (result i32)
    (struct.get $struct 0
      (struct.new $struct
        (global.get $global)
      )
    )
  )
)

Read 42

Emit 42

How do we write an optimization pass that does this 
kind of thing? (note: function code, globals, heap)



Define “Locations” that can contain Values
(module
  (type $struct (struct (field mut i32)))

  (global i32 $global (i32.const 42))

  (func “work” (result i32)
    (struct.get $struct 0
      (struct.new $struct
        (global.get $global)
      )
    )
  )
)

global $global

i32.const 42

struct $struct 
field 0

struct.get #0a more “abstract” 
location, by type



Connect the Locations (where values flow)
(module
  (type $struct (struct (field mut i32)))

  (global i32 $global (i32.const 42))

  (func “work” (result i32)
    (struct.get $struct 0
      (struct.new $struct
        (global.get $global)
      )
    )
  )
)

global $global

i32.const 42

struct $struct 
field 0

struct.get #0



Just Flow Stuff
(module
  (type $struct (struct (field mut i32)))

  (global i32 $global (i32.const 42))

  (func “work” (result i32)
    (struct.get $struct 0
      (struct.new $struct
        (global.get $global)
      )
    )
  )
)

global $global

i32.const 42

struct $struct 
field 0

struct.get #0

42

42

42

42And so the function returns 42!



Just Flow Stuff: The Simplest Algorithm
1. Define locations that can contain values
2. Connect them where values can flow around
3. Flow:

a. When a new value arrives at a location L, add it
b. Send the resulting value at L to L’s targets
c. Keep going while stuff is changing



Just Flow Stuff: The Simplest Algorithm
1. Define locations that can contain values
2. Connect them where values can flow around
3. Flow:

a. When a new value arrives at a location L, add it
b. Send the resulting value at L to L’s targets
c. Keep going while stuff is changing

 a lot to say 
about this, it 
turns out… 

what are the 
values? how do 
we add them?



GUFA: Grand Unified Flow Analysis
Exactly what we’ve seen so far, implemented in Binaryen on these values:

● None (empty) (module
  (func $work (param i32) ;; unexported
    (drop
      (local.get 0)       ;; never reached
    )
  )
)



GUFA: Grand Unified Flow Analysis
Exactly what we’ve seen so far, implemented in Binaryen on these values:

● None (empty)
● Single constant

(i32.const 42)
(ref.func $foo)
;; etc.



GUFA: Grand Unified Flow Analysis
Exactly what we’ve seen so far, implemented in Binaryen on these values:

● None (empty)
● Single constant
● Immutable global

;; (not important today)

(import “a” “b” (global $g i32))

(func (result i32)
  (global.get $g) ;; while we have no idea
                  ;; what the actual value
                  ;; is, but it is what is
                  ;; in the global (hence
                  ;; two calls to here
                  ;; will compare equal)
)



GUFA: Grand Unified Flow Analysis
Exactly what we’ve seen so far, implemented in Binaryen on these values:

● None (empty)
● Single constant
● Immutable global
● Cone: wasm type+depth

;; chain A :> B :> C
(type $A (struct))
(type $B (sub $A (struct)))
(type $C (sub $B (struct)))

(select            ;; Cone(A, 1)
  (struct.new $A)  ;; Cone(A, 0)
  (struct.new $B)  ;; Cone(B, 0)

;; Cone(A, 1) === { A, B }
;; (no C!)

(select         ;; Cone(i32, ∞) === i32
  (i32.const 0) ;; i32.const 0
  (i32.const 1) ;; i32.const 1



Ok, we have a graph of locations, and we flow stuff…

What properties does this 
have?

1. Does it converge? 
(will it finish running 
no matter the input)

2. Is it deterministic? 
(will it always return 
the same output)



L receives the values X 
and Y. Say X arrives first. 
The first update:

None ⊔ X => X

(⊔ == “join”, union). Second 
update:

X ⊔ Y => ..

Whatever that is, it is 
greater than X, Y: 
monotonic. + finite # of 
values => convergence

Convergence: YES

X

L

Y



First, let us write out the full “add in new content” operation.

For a location L with existing content E and new content N, we update L’s 
content to:

(E ⊔ N) ⊓ TL

where TL is the type of the location L - since we trust the wasm type 
system! - and ⊓ is “meet” (intersection).

Determinism..?



For example:

(func (param $ref (ref null $X))
  (block $b (result (ref $X))
    (br_on_non_null $b
      (local.get $ref)))
    ..

We naively flow the nullable local to the block, then use the block’s type to 
filter out nulls.

(We could instead reason that br_on_non_null sends non-null, but it is 
simpler to use $b’s type.)

Determinism..?



Recall that the update rule is (for existing content E, new content N, and 
known wasm type at that location T):

(E ⊔ N) ⊓ T

If X appears before Y, we have, after two updates:

(((E ⊔ X) ⊓ T) ⊔ Y) ⊓ T

Or, if Y is first:

(((E ⊔ Y) ⊓ T) ⊔ X) ⊓ T

What does any of this have to do with Determinism..?!



((X ⊓ T) ⊔ Y) ⊓ T   ???   ((Y ⊓ T) ⊔ X) ⊓ T

If these differ then the order matters, and determinism is lost (unless we 
fix some order, which is generally slower).

These are equal if we have the distributive property in math. Do we?

What does any of this have to do with Determinism..?!



We do not have the distributive property :( Consider:

X = (ref.func $foo) = $foo   ;; a specific function 
Y = (ref.null)      = null   ;; a null
T = (ref func)               ;; any func, no null

Note:

$foo ⊔ null == (ref null func)

Only a cone can contain two constants (a func and a null). This “lossy” 
operation makes the order matter:

(($foo ⊓ (ref func)) ⊔ null) ⊓ (ref func) == (ref func)

((null ⊓ (ref func)) ⊔ $foo) ⊓ (ref func) == $foo



Why did that happen? Recall that our values are:

● None (empty)
● Single constant
● Immutable global
● Cone: wasm type+depth

If we allowed sets of multiple constants we’d be ok, but they would need to 
be of arbitrary size, and this adds overhead (often for little optimization 
benefit). Tradeoff.



What to do?
Well, we can just fix the nondeterminism by picking an order, as mentioned 
before. Slightly slower.

But we may end up with the “bad” order in practice! We want the good one.

Is there some more principled approach to all of this, perhaps studied in 
academia..?



Yes: AI!
                                                     …no, not that AI: Abstract Interpretation

Analyze by computing a transfer function on each location.

For example, an i32.add’s transfer function would be:

f(left, right) = left + right

But “abstractly.”

E.g. abstracting over multiple values, if left is a value in { 0, 10 } and right is
{ 20 }, then f returns { 20, 30 }. And we iterate to a fixed point.

[meme: fancy winnie the pooh]

[some AI logo]



Abstract Interpretation
When the values have nice properties (commutativity, etc.) then they form a 
“lattice.” Abstract Interpretation on a finite lattice is guaranteed to converge to 
the minimal fixed point. Great!

Wait, why doesn’t “Just Flow Stuff” have the same guarantee?

First, as we saw, for practical reasons we lack some of the “nice properties” 
like distributivity (and perhaps others, for similar reasons).

But there is another reason.



“Just Flow Stuff” vs Abstract Interpretation
Just Flow Stuff combines existing and new, and intersects with the type:

E <- (E ⊔ N) ⊓ T

Abstract Interpretation (here) combines all the sources, then intersects:

E <- (S1 ⊔ S2 ⊔ .. SN) ⊓ T

Just Flow Stuff “accumulates” in place (E is on both sides). That is why we 
end up with nested joins and meets (((X ⊓ T) ⊔ Y) ⊓ T) and our breaking 
of distributivity was dangerous! Accumulation can accumulate “lossiness.”



So let’s go with Abstract Interpretation!

Abstract Interpretation emits the optimal thing, right?

[meme: padme “x, right? …right?”]



Both Algorithms Disappoint
Reminder: Just Flow Stuff computes one of these:

(($foo ⊓ (ref func)) ⊔ null) ⊓ (ref func) == (ref func)

((null ⊓ (ref func)) ⊔ $foo) ⊓ (ref func) == $foo

Abstract Interpretation computes this:

($foo ⊔ null) ⊓ (ref func) == (ref func)

So it always emits the worse thing… Wait, how is that possible?



Both Algorithms Disappoint
Abstract Interpretation emits the optimal thing for a given transfer function 
and values. Our values allow only a single constant, so once more, joining two 
constants (a func and a null) is a “lossy” operation.

Fixing the values is hard (overhead, as we mentioned). But can we fix the 
transfer function?



Both Algorithms Are Fixable
Yes! Just Flow Stuff was sometimes optimal, if we were lucky and got the right 
order. That other order added a meet ⊓. We can fix both in that way.

Just Flow Stuff:

E <- (E ⊔ (N ⊓ T)) ⊓ T
              ^^

Abstract Interpretation:

E <- ((S1 ⊓ T) ⊔ (S2 ⊓ T) ⊔ .. (SN ⊓ T)) ⊓ T
          ^^          ^^            ^^



Just Flow Stuff vs Abstract Interpretation
Both have the same problem, both have the same solution.

So what is the actual difference?



Tradeoffs: Memory
Just Flow Stuff only flows forward (let 
targets know something changed).

JFS

AI

Abstract Interpretation requires 
bidirectional links, to go back and 
read all sources.

● More memory for the graph
● Reads of sources often not 

cache-friendly



Tradeoffs: Memory
How big is the efficiency downside of Abstract Interpretation?

I converted GUFA to use that approach in a branch. Diffs:

Time (seconds) Memory (MB)

Java (calcworker) 9% 14%

Dart (complex) 11% 18%

C++ (clang) 6% 11%

https://github.com/kripken/binaryen/tree/gufa.abstract-interpretation


Tradeoffs: Generalization
Abstract Interpretation is generalizable: Sees all sources at once, and can 
define arbitrary transfer functions f(S1, S2, .., Sn).

If all we do is flow values around we don’t need that, but if we want anything 
more - even an i32.add - then we need Abstract Interpretation.

However…



Tradeoffs: Generalization

?

i32.eqz

i32.add

?

1

42

0 41

Abstract Interpretation computes 
as it goes:



Tradeoffs: Generalization

?

i32.eqz

i32.add

?0 41

Abstract Interpretation computes 
as it goes:

Just Flow Stuff, by itself, stops here



Tradeoffs: Generalization

?

i32.eqz

i32.add

?

1

42

0 41

Abstract Interpretation computes 
as it goes:

Just Flow Stuff, by itself, stops here

But the main optimization pipeline 
uses the constants Just Flow Stuff 
inferred, for the same results as 
Abstract Interpretation (however: 
efficiency? cycles?)



Tradeoffs: Parallelization
Abstract Interpretation has a natural way to run in parallel. Consider two 
locations A and B, then their updates are:

Anew = fA(Bold, Xold)     ( = (Bold ⊔ Xold) ⊓ TA )

Bnew = fB(Yold, Aold)

Note how they read from each other’s old state. But that is not a problem if 
we keep the old state fixed as we generate the new state in parallel.



Tradeoffs: Parallelization
Given the same graph, Just Flow Stuff has rules like this:

A <- (B ⊔ A) ⊓ TA   ;; add B to A

A <- (X ⊔ A) ⊓ TA   ;; add X to A

B <- (Y ⊔ B) ⊓ TB   ;; add Y to B

B <- (A ⊔ B) ⊓ TB   ;; add A to B

We can do each update as a compare-and-swap, at the risk of contention?

Another approach is to parallelize inside functions (as other passes do), 
interleaving global updates?



Tradeoffs: Parallelization
There is a simpler way to parallelize Just Flow Stuff: Take one rule,

A <- (B ⊔ A) ⊓ TA   ;; add B to A

Rather than update A in place, we can add B to a “mailbox” M for A:

MA.append(B)

Then we can operate on the mailboxes in parallel. In fact, we know which 
index in the mailbox to use for each source (index in list of A’s sources):

MA[IB,A] = B



Then Just Flow Stuff does this in each (parallel) update:

Anew <- (MA[IB,A] ⊔ MA[IA,A]) ⊓ TA = (Bold ⊔ Aold) ⊓ TA

since the values in the mailbox are exactly the values from the old iteration.

And that is exactly the rule for Abstract Interpretation!

[meme: pam from the office, “they’re the same picture”]



Conclusion
Just Flow Stuff is Abstract Interpretation, where the transfer function just 
flows values (no computation), and updates are incremental/in-place.

● Just Flow Stuff is 10-15% more efficient in time and memory
● Abstract Interpretation is generalizable to more things, and 

parallelizable

Worth generalizing GUFA if/when we consider adding new optimizations.

Thanks to @tlively for the discussion that led to this talk!

Questions?


