Reducing carbon in the digital realm c36c 2019 @mrchrisadams This talk is online: http://bit.ly/c36c-reduce-carbon

About me

Loco2 - Low CO2 Travel in Europe by train

A.M.E.E (Avoid Mass Extinction Engine) - CO2 calculation as an API

Green Web Foundation - Make the web green

ClimateAction.tech - online community for folk in tech to discuss climate action

What we'll cover

Measuring carbon

A mental model for reducing carbon

Where to go next

What we'll cover

Measuring carbon

A mental model for reducing carbon

Where to go next

PERCIPITATION, DEPOSITION / DESUBLIMATION Water droplets fall from clouds ______ as drizzle, rain, snow, or ice.

ADVECTION

Winds move clouds through the atmosphere.

CONDENSATION, CLOUDS, FOG

Water vapor rises and condenses as clouds.

EVAPORATION

Heat from the sun causes water to evaporate.

HYDROSPHERE, OCEANS The oceans contain 97% of Earth's water.

The Water Cycle

Water moves around our planet by the processes shown here. The water cycle shapes landscapes, transports minerals, and is essential to most life and ecosystems on the planet. ACCUMULATION, SNOWMELT, MELTWATER, SUBLIMATION, DESUBLIMATION/DEPOSITION

Snow and ice accumulate, later melting back into liquid water, or turning into vapor.

SURFACE RUNOFF, CHANNEL RUNOFF, RESERVOIRS

Water flows above ground as runoff, forming streams, rivers, swamps, ponds, and lakes.

PLANT UPTAKE, INTERCEPTION, TRANSPIRATION

Plants take up water from the ground, and later transpire it back into the air.

INFILTRATION, PERCOLATION, SUBSURFACE FLOW, AQUIFER, WATER TABLE, SEEPAGE, SPRING, WELL

Water is soaked into the ground, flows below it, and seeps back out enriched in minerals.

VOLCANIC STEAM, GEYSERS, SUBDUCTION

Water penetrates the earth's crust, and comes back out as geysers or volcanic steam

Water Cycle v1.11 (2016) was created by (bud Tal. Contact info at ehudtal.com 💿 🕥 🔘

The water cycle: - wikiwand.com/en/Water_cycle

The Earth's Carbon Cycle: - Robert Rohde - youtu.be/dwVsD9CiokY

The Earth's Carbon Cycle: - Robert Rohde - youtu.be/dwVsD9CiokY

The Earth's Carbon Cycle: - Robert Rohde - youtu.be/dwVsD9CiokY

Teaching climate crisis thread for 4-7 year-olds, by @JKSteinberger

How to measure carbon emissions, communicated through the medium of hot beverages

Scope 1

Emissions from burning fossil fuels to make hot coffee

Scope 2

Emissions from electricity generated on your behalf, to make coffee

Scope 3

Emissions from activity in your supply chain, so you can have coffee

Measuring carbon emissions - Green Web Foundation

In 2017, Stripe became a carbon-neutral company

Though Stripe doesn't make a physical product—our API powers online commerce for millions of businesses around the world—our operations still contribute to global climate change. So, we decided to take action by measuring our greenhouse gas footprint and purchasing enough carbon offsets to reach net-zero emissions.

We began 2017 at an estimated 18,000 metric tonnes of emissions. The GHG Protocol Corporate Standard assesses greenhouse gas emissions on three dimensions. Stripe estimated all three emission scopes, in tonnes of carbon dioxide equivalent (TCO2E), to determine the magnitude of our impact.

Stripe's climate reporting page, from 2018

SCOPE 1 DIRECT GHG

Emissions from sources owned or controlled by Stripe, e.g. natural gas burned to heat our buildings.

320 TCO2E

SCOPE 2 INDIRECT GHG

Emissions from purchased energy sources, e.g. the electricity we buy from utility companies.

SCOPE 3 OTHER INDIRECT GHG

Emissions from operations that are not directly owned or controlled by Stripe. This includes many sources, but we've chosen to focus on servers, employee commuting, and business travel.

16800 TCO2E

Amazon's CO2 footprint in 2018 - 44m tonnes

(about the same as Finland)

Amazon's Carbon Emissions from 2018

Google's CO2 footprint in 2018 - 1.2m tonnes

(about the same as Liberia)

Scope 1 Scope 2 (location) Scope 2 (market) Scope 3 (business travel and commuting)³⁸
Total location-based GHG emissions

Google's carbon emissions for 2018

Apple's CO2 footprint in 2018, <u>for just its facilities</u> - 0.6m tonnes

(about the same as The Gambia)

Scope 2 0.08m tonnes

99% renewable energy (0.7m tonnes avoided through sourcing renewable energy)

~0.3m tonnes, from business travel, ~0.2m tonnes from employee commuting Apple's CO2 footprint in 2018, <u>for its products</u> -25.2m tonnes (about the same as Mongolia)

This is all Scope 3

Apple's carbon emissions for 2018

Apple's CO2 footprint in 2018, <u>for its products</u> -25.2m tonnes (about the same as Mongolia)

This is all Scope 3

Apple's carbon emissions for 2018

What we'll cover

Measuring carbon

A mental model for reducing carbon

Where to go next

Platform - infrastructure you run

Packets - infrastructure other folk run

Process - how your org works

	Platform	Packets	Process
Scope 1			Burning fuel driving in organisation-owned vehicles
			Burning fossil fuels for heat on premises
Scope 2	On premise IT computing		Air conditioning and ventilation in offices
			Electricity in offices for light, computing, etc.
Scope 3	Hosted infrastructre & cloud services	Bandwidth you pay for from cloud/hosting providers	Accommodation while travelling
		Bandwidth from users accessing a digital service / site	Leased, serviced workspaces
			Travel provided as a service: trains, taxis, planes

Platform - infrastructure you run

Provisioning - how

Provider - who

Programming Language - what

Provisioning -

How you match capacity to use

Our usage patterns of the internet (<u>CEEE Power of Wireless Cloud report</u>)

You only get to pick two:

- use mature hosted services instead of building everything yourself
- avoid oligopoly diverse ecosystems are healthy ecosystems

Who you get your compute from

AWS Region map - twitter.com/awsgeek/status/1113820651436085248

THE DIRECTORY COMPRISES 501 GREEN HOSTING COMPANIES IN 62 COUNTRIES

The Green Web Foundation - www.thegreenwebfoundation.org/directory

Brief segway into energy market weirdness

Fig. 1. Demand Side Managment (DSM) strategy - Load Shifting. The 'duck curve' of solar power generation can be observed, with energy generation peaking in the middle of the day

ICT4S - Lappenrate - A low carbon kubernetes scheduler

The way we charge electric cars could make better use of electricity on the grid. We're testing a new app with our members to help them charge their cars when power is cheaper and greener.

Bulb - smart charging of electric cars

A Low Carbon Kubernetes Scheduler

Aled James Email: aledjms@gmail.com Daniel Schien University of Bristol, UK Email: Daniel.Schien@bristol.ac.uk

Abstract—A major source of global greenhouse gas emissions is the burning of fossil fuels for the generation of electricity. The portion of electricity generated from fossil fuel varies across regions, and within a region with demand for electricity and the availability of renewable energy sources. Cloud providers operate data centres in locations around the planet. And certain kind of server computation can tolerate migrating between data centres.

In this paper we describe the design and implementation of a low carbon scheduling policy for the open-source Kubernetes container orchestrator. We apply this scheduler in a form of demand side management by migrating consumption of electric energy to countries with the lowest carbon intensity of electricity.

The primary contributions of this text are (i) the scheduler's design, which provides a generic model for optimising workload placement in regions with the lowest carbon intensity (ii) an evaluation of its performance in a case study with a major public cloud provider (iii) an implementation of a demand side management solution that consumes electricity where, instead of when, grid carbon intensity is lowest.

Index Terms—Kubernetes; green computing; DSM; Demand Side Management; renewable energy; grid carbon intensity

pdf

renewable ('green') energy as well as fossil fuel or nuclear based energy sources ('brown energy') in order to compensate for the intermittent nature of renewable energy generation. Solar photovoltaic (PV) power production primarily depends on the amount of solar irradiation (insolation) reaching the solar panel; however, that irradiation is not uniformly distributed over time [7]. In addition to the rotation of the earth, weather and intermittend clouds block the Sun's rays and thus influence solar power generation output.

Intermittency of availability of renewable energy sources is one of the factors driving demand side management (DSM) in the electric grid where consumers of electric grid alter their energy consumption patterns. In the area of energy systems management, demand side management (contrasts with supply side interventions) refers to any initiatives (technical interventions, pricing models and monetary incentives) that affect how and when electricity is being required by consumers. While much of the research on DSM focusses on domestic energy

ICT4S - Lappenrate - A low carbon kubernetes scheduler investigating DSM by

We had an energiewende. We got cheap, green, distributed energy.

What if we had a digitalwende? Cheap, green, distributed compute?

Programming language

Where appropriate, matching the language to the job can help, because different languages have different features and goals.

<u>Reducing carbon footprint of network services with MirageOS unikernels</u> -Hannes Mehnert, yesterday

Time & Memory	Energy & Time	Energy & Memory	Energy & Time & Memory C • Pascal • Go Rust • C++ • Fortran		
C • Pascal • Go	С	C • Pascal			
Rust • C++ • Fortran	Rust	Rust • C++ • Fortran • Go			
Ada	C++	Ada	Ada		
Java • Chapel • Lisp • Ocaml	Ada	Java • Chapel • Lisp	Java • Chapel • Lisp • Ocaml		
Haskell • C#	Java	OCaml • Swift • Haskell	Swift • Haskell • C#		
Swift • PHP	Pascal • Chapel	C# • PHP	Dart • F# • Racket • Hack • PHP		
F# • Racket • Hack • Python Lisp • Ocaml • Go		Dart • F# • Racket • Hack • Python	JavaScript • Ruby • Python		
JavaScript • Ruby	Fortran • Haskell • C#	JavaScript • Ruby	TypeScript • Erlang		
Dart • TypeScript • Erlang	Swift	TypeScript	Lua • JRuby • Perl		
JRuby • Perl	Dart • F#	Erlang • Lua • Perl			
Lua	JavaScript	JRuby			
	Racket				
	TypeScript • Hack				
	PHP				
	Erlang				
	Lua • JRuby				
	Ruby				

Table 5. Pareto optimal sets for different combination of objectives.

Energy Efficiency across Programming Languages - Green Software Lab, Portugal

Infrastructure you **do not** control

You can only control **how much you send** over the wire instead.

Avg (mean) page size is 3mb - speedcurve.com/blog/web-performance-page-bloat

Lighthouse - break the build when you break your perf budget

Sustainable Web

These checks show changes to make to reduce the carbon emissions from what you build. Climate crisis, remember?

Page summary

Page is built using resources from servers running on fossil fuels

Burning fossil fuels to power servers is avoidable, and contributes to climate breakdown. See the <u>W3C Ethical Web</u> <u>Principles</u>, on Sustainable Web, and learn more at <u>The Green Web Foundation</u> \sim

Greenhouse - Lighthouse, but for carbon emissions

The web must be an environmentally sustainable platform

"The web, as a whole, is a big source of carbon emissions, because it is a big consumer of power.

New web technologies should not make this situation worse. We will consider power consumption and the resulting emissions when we introduce new technologies to the web"

W3C Technical architecture group

Distribution of online data flows between different uses of digital technologies and of online video in 2018 in the world

Changing how we design sites is not enough. Video dwarfs web traffic.

Process - how your org works

Decisions you make, about where and how you work, that cause emissions.

Process - how your org works

Inward - greening of digital projects.

Less visible to the end user.

• We make WordPress better, for everyone.

We deliver the highest quality website design and development for positive businesses, charities and the public sector, powered by WordPress and green energy.

Established 2007 | London

Once you run on green infrastructure, travel & offices are the next largest source of emissions (link)

0	∼ 🖶 🏲 100% 🗸	\$ % .0 .00 1	23 • Default	(Ari 👻 10	• B I ÷	A 🗟. 🖽	22 × 🗏 🔳	+ <u>↓</u> + ⊹ + ?	7 • GD 🛃 🖩] 🛛 - 🤉
	A	В	С	D	E	F	G	Н	1	J
	Estimated emiss	ions from p	roject:							
	Project name:			Project URL:				Model version	1.0.6	
	Date start:	2019-05		Date end:	2020-05					
	Platform	Emissions from in	frastructure vou							
	control (your networks and hosting)		420.00	1	Process					
	Deelvata	nosting)		420.00	kg Co2e	24.4%				
	Packets	Emissions from infrastructure you don't control (rest of the internet)		70.74	he 0-0-					
		Emissions from the use of office			kg Coze	Packets				
	Process	space, or commuting while working on the project		158.23	ka Co2o	10.9%			Platform 64,7%	
		working on the pro-	Ject		Ng COZE				04.7%	
	Total footprint			648.96	ka Co2e					
					Ng 0020					
	To update these summary figures, update the cells in yellow in the Platform, Packets and Process Tabs									

Link to template spreadsheet.

Process - how your org works

Outward - greening **through** digital projects.

More visible to the end user.

Recycled and fair materials Modular and repairable design A commitment to fairness

Full-day battery life 12MP camera for quality photos 64GB internal storage

Easy to use Android 9 Qualcomm Snapdragon 632

See all tech specs

Fairphone's LCA Report for the FP2 handset

Figure 4-2: Relative impacts of the different modules of the production phase, impact category GWP

Fairphone's LCA Report for the FP2 handset

Figure 1-3: Results per year of use - baseline and repair scenario

Fairphone's LCA Report for the FP2 handset

Upgrade your camera, not your whole phone

Keeping your phone for 5 years instead of 3 will cut your phone's carbon footprint by 30%

Learn more

Fairphone's marketing page for their FP2 camera

What we'll cover

Measuring carbon

A mental model for reducing carbon

Where to go next

"We will not use fossil fuel powered infrastructure for new services or projects.

We won't accept work on projects to help extract more fossil fuels."

ClimateAction.tech

Technology professionals using our skills, tools, and influence to amplify the Climate Movement.

Climate Action Tech - https://climateAction.tech

Is your website hosted green?

One day the Internet will run entirely on renewable energy. The Green Web Foundation believes that day should be within reach, and develops tools to speed up the transition towards a green Internet

http://www.yourwebsite.com

СНЕСК >

501.345.271 checks performed to date, **13%** is powered by renewable energy

The Green Web Foundation

Sunday 6pm, lecture room M2

carbon.txt workshop Help work out a convention for verifying green energy in the services we build

Carbontxt.org | Link to carbon.txt workshop at Congress

Thanks!

e: chris@thegreenwebfoundation.org

t: <u>@mrchrisadams</u>

training: <u>thegreenwebfoundation.org</u> newsletter: <u>greening.digital</u>